

August 1977

This document is an introductory manual for the RT-1 1 V03 operatrng
system. Its purpose is to acquaint new users with the RT-11 commands
that perform common system operations. This manual presents the
background material necessary to understand the system operations. It
also contains a series of command examples and demonstration exercises
that complement the text.

INTRODUCTION TO RT-11

Order No. DEC-1 l-ORITA-A-D

SUPERSESSIONbJPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: RT-11 V03

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation l maynard. massachusetts

First Printing, August 1977

The information in this document is subject to change without notice and should not be construed as a commit-
ment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors
that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only in accordance
with the terms of such license.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright @ 1977 by Digital Equipment Corporation

The postage prepaid READER’S COMMENTS form on the last page of this document requests the user’s critical
evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSYSTEM-20

MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET-8
TYPESET-10
TYPESET- 11

CONTENTS

Page

PREFACE ix

CHAPTER 1 INTRODUCING THE RT-11
COMPUTER SYSTEM

SYSTEM HARDWARE.
The Computer.
TheTermina 1..
The Storage Medium.
Optional Devices.

SYSTEM SOFTWARE
The RT-11 Operating System
Language Processors
Application Packages.

SYSTEM DOCUMENTATION
Hardware Manuals.
Software Manuals
Source Listings

. . l-l

. . l-l

. . l-l

. . 1-4~

. . l-6

. . l-8

. l-10

. l-11

. 1-12

. 1-13

. 1-13

. 1-13

. 1-14
. 1-14

CHAPTER 2 STARTING THE RT-11 COMPUTER
SYSTEM 2-l

COMPUTER MEMORY 2-l
HARDWARE CONFIGURATION 2- 1

Terminal....................................2- 3
Computer 2-3
System Volume. 2-3
Storage Volume. 2-3
Optional Devices and Supported Languages 2-4

BOOTSTRAP PROCEDURE. 2-4

CHAPTER 3 INTERACTING WITH THE RT-11
COMPUTER SYSTEM

USING THE CONSOLE TERMINAL TO
EXCHANGE INFORMATION
USING MASS STORAGE VOLUMES TO STORE
INFORMATION .

File Storage. _
File Protection .

. 3-l

. 3-l

...... 3-4

...... 3-8

...... 3-8

CHAPTER 4 USING THE MONITOR COMMAND
LANGUAGE4-l

ENTERING COMMAND INFORMATION.4-i
General Command Format4-2
Control Commands.4-3
Recreating the Examples. 4-4

. . .
111

Page

CORRECTING TYPING MISTAKES
INITIAL MONITOR COMMAND OPERATIONS. ...

Using VT 11 Display Hardware
Entering the Date and Time-of-Day.
Assigning Logical Names to Devices
Listing Volume Directories
Initializing the Storage Volume.

. 4-5

. 4-6

. 4-6
4-9

4-10
4-14
4-16

CHAPTER 5 CREATING AND EDITING TEXT FILES 5-l
THE RT-11 EDITOR . 5-l
CREATING A TEXT FILE. 5-2
EDITING A TEXT FILE. 5-4
USING UPPER- AND LOWER-CASE CHARACTERS 5-13
USING A GRAPHICS DISPLAY TERMINAL
DURING EDITING. 5-l 6

Normal Use of the Graphics Display 5-l 6
Immediate Mode. 5-l 7

CREATING THE DEMONSTRATION PROGRAMS 5-20

CHAPTER 6 COMPARING TEXT FILES.6-l
PERFORMING A COMPARISON. 6-l

CHAPTER 7 PERFORMING FILE MAINTENANCE
OPERATIONS.

FILE DIRECTORY OPERATIONS
MULTIPLE FILE OPERATIONS
FILE COPYING OPERATIONS
FILE RENAMING OPERATIONS
FILE DELETION OPERATIONS.
FILE LISTING OPERATIONS.

........ 7-l

........ 7-l

........ 7-3

........ 7-3

........ 7-5

........ 7-6

........ 7-7

CHAPTER 8 CHOOSING A PROGRAMMING
LANGUAGE .

HIGH-LEVEL VS MACHINE-LEVEL LANGUAGES. .
RT-11 PROGRAMMING LANGUAGES.
CHOOSING A LANGUAGE FOR THE
DEMONSTRATION .

CHAPTER 9 RUNNING A FORTRAN IV PROGRAM 9-l
THE FORTRAN IV PROGRAMMING LANGUAGE 9-l
THE FORTRAN IV LANGUAGE PROCESSOR 9-2
USING LIBRARY MODULES . 9-2
COMPILING THE FORTRAN IV PROGRAM 9-3
LINKING OBJECT MODULES TOGETHER 9-9
RUNNING THE FORTRAN IV PROGRAM. 9-l 1
COMBINING OPERATIONS . 9-12

. 8-1

. 8-l

. 8-3

. 8-4

iv

Page

ALTERNATE FUNCTIONS9-l 3
FILE MAINTENANCE. 9-14

CHAPTER 10 RUNNING A BASIC-l 1 PROGRAM 10-l
THE BASIC-l 1 PROGRAMMING LANGUAGE. 1 O-l
THE BASIC LANGUAGE PROCESSOR. 1 O-l
USING THE BASIC INTERPRETER 1 O-2

Immediate Mode. 1 O-3
Creating and Editing a BASIC Program 1 O-4

RUNNING A BASIC PROGRAM 1 O-9
FILE MAINTENANCE. lo-13

CHAPTER 11 RUNNING A MACRO-l 1 ASSEMBLY
LANGUAGE PROGRAM. 1 l-l

THE MACRO-l 1 ASSEMBLY LANGUAGE. 1 l-l
THE MACRO-l 1 LANGUAGE PRQCESSOR. 1 l-2

The Program Counter 1 l-3
The Symbol Table. 1 l-4
Machine Language Code 1 l-5

ASSEMBLING THE MACRO-l 1 PROGRAM. 1 l-7
LINKING OBJECT MODULES TOGETHER 1 l-l 5
RUNNING THE MACRO-l 1 PROGRAM. 11-17
COMBINING OPERATIONS 1 l- 18
FILE MAINTENANCE. 11-19

CHAPTER 12 LINKING OBJECT PROGRAMS. 12-l
RESOLVING SYMBOLIC AND LIBRARY
REFERENCES . _ 12-2
PROGRAM RELOCATION AND ADDRESS
ASSIGNMENT . 12-3

Absolute and Relocatable Program Sections 12-4
The Overlay Feature . 12-7
PRODUCING A LOAD MODULE AND
A LOAD MAP. 12-7

CHAPTER 13 CONSTRUCTING LIBRARY FILES. 13-1
KINDS OF LIBRARY FILES. 13-1

Macro Libraries. 13-l
Object Libraries. 13-2

CREATING AND MAINTAINING A LIBRARY FILE. ... 13-2
Creating Object Library Input Files. 13-3
Building the Object Library. 13-5
Updating the Object Library. 13-6

FILE MAINTENANCE. 13-8

V

Page

CHAPTER 14 DEBUGGING A USER PROGRAM. 14-1
AVOIDING PROGRAMMING ERRORS 14-l
WHEN PROGRAMMING ERRORS OCCUR 14-2
USING THE ON-LINE DEBUGGING TECHNIQUE. 14-4
FILE MAINTENANCE. 14-l 3

CHAPTER 15 USING THE FOREGROUND/
BACKGROUND MONITOR

THE FOREGROUND/BACKGROUND
ENVIRONMENT .
CHANGING MONITORS
USING THE FB MONITOR

Communication in a Two-Job Environment .
Creating the Foreground Job.
Executing the Foreground and Background
Jobs................................

FILE MAINTENANCE.

. 15-1

. . . .

. . . . 15-6
. . . 15-11

CHAPTER 16 USING INDIRECT FILES. 16-1
CREATING AN INDIRECT FILE 16-l

Entering Monitor Commands 16-2
Using the Editor to Create an Indirect File 16-2

EXECUTING AN INDIRECT FILE 16-4
FILE MAINTENANCE. 16-l 0

CHAPTER 17 ADVICE TO NEW USERS. 17-1

APPENDIX A MANUAL BOOSTRAPPING OPERATIONS. ... A-l

APPENDIX B SELECTED SYSTEM TOPICS. B-l

GLOSSARY Glossary-l

INDEX..Index- 1

FIGURES

FIGURE PREFACE-l
l-l
l-2
l-3
l-4

l-5
l-6
l-7
2-l
3-l

Flowchart for Selective Reading
RT-11 Computer System.
PDP-11 Computers
Terminal Devices.
Random-access Storage Media and
their Devices
Peripheral Devices. ,
RT-11 System Software
RT-11 Operating System.
The Boostrap/Computer Relationship
LA36/VT52 Terminals

xii
. l-2
. l-3
. l-4

. l-6
l-8

l-10
l-l 1
. 2-2
. 3-2

vi

Page

3-2
3-3
4-l
5-l
5-2
9-l
9-2
9-3
9-4
9-5

10-l

1 l-l
11-2
11-3
1 l-4
1 l-5
1 l-6
l2-1
12-2
A-l
A-2

TABLE 2-l Representative System Volumes 2-3
3-l Keyboard Characters. 3-5
4-l Keyboard Symbols 44
4-2 Physical Device Names 4-l 1
4-3 Special Logical Device Names 4-l 1
4-4 File Types.4-15
5-l Command Arguments 5-5
5-2 Immediate Mode Commands. 5-l 7
8-l Language Comparisons 8-2

1 l-l Decimal/Octal/Binary Conversion. 1 l-6
A-l Binary Conversion.A-5

Keyboard Layouts. 3-3
Mass Storage Volumes. 3-6
VT1 1 Display Hardware 4-7
Editing with RT-11 5-2
Text Window Format 5-16
Evolution of a FORTRAN Program ... 9-2
Function of a FORTRAN Compiler ... 9-2
Dimensions of FUN(X, Y). 9-7
The Link Operation. 9-10
The Result of GRAPH.SAV 9-l 2
Functions of the BASIC Language
Processor. 1 O-2
PDP-11 Programming Card 1 i-l
Evolution of a MACRO-l 1 Program . 11-2
Function of a MACRO-l 1 Assembler . 1 l-3
PDP-11 Computer Memory. 1 l-4
PDP-11 Word. 1 l-6
The Link Operation. 11-16
Link Functions 12-l
Object Module Relocation. 12-5
Pushbutton ConsoleA-2
Switch Register Consoles.A-4

TABLES

vii

PREFACE

The RT-1 1 (Real Time-l 1) computer system is a single-user com-
puter/operating system that serves the programming needs of both
the beginning and the advanced programmer. It supports a number of
programming languages, including industry-standard FORTRAN and
BASIC; easily-learned FOCAL; APL; and for more advanced users,
the PDP-11 assembly language, MACRO-l 1. In addition, it provides a
comprehensive set of operating commands that programmers at all
levels use to control system operations.

The purpose of this introductory manual is to acquaint you with a
number of RT-11 operating commands that are used to perform
common system operations. The manual does this by first presenting
the background material that you need to understand a particular
system operation; then it shows you how to apply the system opera-
tion in a series of operating commands and exercises that you re-
create; finally, it provides a list of reference materials that contain
more information about the operation. This approach makes it possi-
ble for you to learn quickly the major features of the system; at the
same time, it eliminates many of the early learning problems en-
countered by new users.

This manual describes system usage fundamentals. It is not the intent
of this manual to teach you to program the PDP-11 computer. You
may already be proficient in one or more of the available program-
ming languages. Likewise, no attempt has been made in this manual
to cover all the possible applications for which the RT-11 computer
system is suited. You will discover many applications yourself as you
continue to use the system.

This manual is designed specifically for three categories of RT-11
users :

MANUAL INTENT

MANUAL DESIGN

l Those having little or no previous “hands-on” computer experi-
ence (including those whose experience has been limited to
batch environments)

ix

Pre.face

l Those who are experienced users of a computer system other
than RT-11

0 Those who have used previous versions of the RT-11 computer
system but wish a quick introduction to the newest features of
the current system (Version 3 and later releases)

The manual contains 17 chapters and 2 appendixes. The descriptions
that follow and the chart at the end of this section will help you
determine your own reading path.

Chapter 1, Introducing the RT-11 Computer System, discusses gen-
eral system concepts. It introduces the roles of hardware and soft-
ware in a computer system and describes the specific hardware and
software components of the RT-11 computer system. Chapter 1 is
intended for users in the first two categories.

Chapter 2, Starting the RT-11 Computer System, shows all users how
to start the system.

Chapter 3, Interacting with the RT-11 Computer System, demon-
strates how you use the console terminal to control system opera-
tions. Again, this chapter is most helpful to users in the first two
categories.

Chapters 4 through 7 describe system operations that are useful to all
categories of users. Each chapter begins with a textual explanation of
a particular system operation and expands into computer demonstra-
tions showing the operation in use. Topics covered are: Using the
Monitor Command Language; Creating and Editing Text Files; Com-
paring Text Files; and Performing File Maintenance Operations.
Experienced RT-11 users may prefer to skip the textual explanations
and review only the computer exercises.

Chapter 8, Choosing a Programming Language, helps you determine
which language to use. Choose BASIC-l 1, FORTRAN IV, MACRO-
11, or a combination of these three languages to continue the exer-
cises in the manual (BASIC-l 1 and FORTRAN IV capabilities are
optional).

If your choice is FORTRAN IV, read Chapter 9, Running a FOR-
TRAN IV Program.

If you wish to use BASIC-l 1, read Chapter 10, Running a BASIC-l 1
Program.

X

Preface

If you choose to exercise MACRO-l 1, read Chapter 11, Running an
Assembly Language Program.

MACRO and FORTRAN users continue to Chapter 12, Linking
Object Programs, and Chapter 13, Constructing Library Files.

All .users should read Chapter 14, Debugging a User Program, which
provides some suggestions for finding and fixing errors in user
programs.

Those users who plan to exercise the foreground/background capa-
bility of the RT-11 system should read Chapter 15, Using the Fore-
ground/Background Monitor.

Fmally, all users should continue to Chapter 16, Using Indirect Files,
which describes the procedure for performing operations unattended,
and Chapter 17, which gives some Advice to New Users.

Two appendixes are provided for reference. Appendix A discusses
system bootstrapping procedures that are not generally needed, but
may be required by some system users. Appendix B provides some
additional information on selected system usage.

A glossary of technical terms appears at the end of the manual for
reference purposes.

The following flowchart will help you plan your reading path
through the manual. Read the chart from top to bottom; answer
the questions and follow the direction of the arrows to see which
chapters you should read.

NOTE

The demonstration portions of this manual are for use
with Version 3 and later releases of RT-11. The exercises
are quite lengthy, and you may prefer not to complete
them in one sitting. You may pause at the end of any
individual chapter. It is important that you stop only at
the end of a chapter since you will otherwise not complete
an exercise and thus may introduce errors that will affect
later exercises. Instructions for pausing and beginning
again are given in Appendix B.

xi

Preface

No Experence.
or other Systems

Read
Chapters 4
through 8

v 1

Read Read Read
Chapter 10 Chapter 9 Chapter 11

1 1

Read Read
Chapters 12 Chapters 12
and 13 and 13

I 1 Read I I Read I
“r(l”
rL^^.^. * 1

Figure PREFACE-l Flowchart for Selective Reading

xii

CHAPTER 1
INTRODUCING THE RT-11 COMPUTER SYSTEM

A computer system is a collection of components working together
to process data. The purpose of a computer system is to make it as
easy as possible for you to use a computer to solve problems. To
accomplish this goal, hardware elements are combined with software
elements to form a functioning unit. The hardware elements are the
mechanical devices in the system, the machinery and the electronics
that perform physical functions. The software elements are the pro-
grams that have been written for the system; these perform logical
and mathematical operations and provide a means for you to control
the system. Documentation includes the manuals and listings that tell
you how to use the hardware and software. Collectively, these com-
ponents provide a complete computer system that allows both lay-
man and expert alike to use a c0mputer.l

SYSTEM HARDWARE
SYSTEM SOFTWARE

+ SYSTEM DOCUMENTATION

COMPUTER SYSTEM

The RT-11 computer system requires three basic hardware items:
the computer itself, which performs all data processing; a terminal
device, used like a typewriter for 2-way communication between the
user and the system; and a storage medium, for storing programs and
data. Figure l-l illustrates the hardware components of a typical
RT-11 computer system.

The computer does the real work of the system; it performs all in-
struction decoding and data processing. The RT-11 computer system
is constructed around a DIGITAL PDP-11 computer, several of
which are shown in Figure l-2. Any model of PDP-11 can be used in
an RT-11 system.

SYSTEM
HARDWARE

The Computer

‘This chapter attempts to build a working vocabulary that is both meaningful to
the new user and consistent with standard DIGITAL terminology. Some defini-
tions may appear inconsistent with those you have previously learned or used.

l-l

Introducing the R T-l I Computer System

Figure l-l RT-11 Computer System

Notice in Figure l-2 that the front panel, or operator’s console, of
each PDP-11 computer is slightly different. The switches, buttons,
and lights that are on the operator’s console can be used for various
kinds of computer operations and applications. In the RT-11 com-
puter system they are used only to start the system. Once the system
has been started, your interaction with the computer system occurs
through the terminal.

l-2

Introducing the RT-11 Computer System

Figure 1-2 PDP-11 Computers

l-3

Introducing the R T-l 1 Computer System

The Terminal The terminal allows 2-way communication between you (the user)
and the computer system. You enter information - operating com-
mands, for example - from the terminal keyboard, which is operated
much like a typewriter keyboard. The computer, in turn, prints in-
formation and messages on the terminal’s printer or screen. Figure
l-3 shows many of the terminal devices that can be used in an RT-11
computer system.

LA36

VT52

Figure 1-3 Terminal Devices

Introducing the R T-l 1 Computer System

VT05

LA30

Figure l-3 Terminal Devices (Cont.)

Generally, an RT-11 computer system has only one terminal through
which all system/user interaction takes place. This is called the con-
sole terminal. If the system has more than one terminal, one of them
is still designated the console terminal; others simply provide auxil-
iary message-printing capabilities.

l-5

In traducing the R T-l 1 Cornpu ter System

The Storage
Medium

The third important hardware device in an RT-11 computer system is
the storage medium (usually a disk). It stores programs - those that
make up the computer system software and those that you create. It
serves as a distribution medium; system software is often packaged
and distributed on a disk by the system supplier. Finally, it stores
other data, information that is eventually needed for a computer
operation (called input), the results of a computer operation (called
output), or textual information such as a report. Figure l-4 shows
the random-access storage media (within their specific drive units)
that can be used in an RT-11 computer system (random access means
that access time for data is independent of the location of data.
Contrast this concept with sequential access).

*
RK06

RP03

Figure l-4 Random-access Storage Media and their Devices

l-6

Introducing the RT-1 I Computer System

DECtape

RK05

~-.. , y_-__ll--_-- . - - - -

RX01 Diskette

Figure 14 Random-access Storage Media and their Devices (Cont.)

l-7

Introducing the R T-l I Computer Sys tern

These three devices - the computer, the terminal, and the storage
medium - are the required hardware components of an RT-11 com-
puter system. With the exception of the computer, all hardware
devices are called peripheral devices. Peripheral devices supplement
the computer by providing external resources for operations that the
computer cannot handle alone. In addition to the terminal and stor-
age medium (which are required peripheral devices), other peripheral
devices can be used in an RT-11 computer system.

Optional Devices Optional peripheral devices are added to a computer system accord-
ing to the specific needs of the system users. For example, computer
systems that are used primarily for program development may have
extra storage devices and a high-speed printing device. Computer sys-
tems used in a laboratory environment may have graphics display
hardware, an oscilloscope device, and an analog-to-digital converter.
Computer systems that provide (or use) information in conjunction
with another kind of computer system usually have a magtape device
because magtape is an industry-standard storage device.

Peripheral devices are categorized as input/output (I/O) devices
since the functions they perform provide information (input) to the
computer, accept information (output) from the computer, or do
both. Some common input devices are card readers, paper tape
readers, and programmable clocks. Output devices include line
printers, paper tape punches, and plotters. Input/output devices
include terminals and storage devices because they are capable of
performing both input and output operations.

Figure l-5 shows several of the optional peripheral devices that are
often added to an RT-11 computer svstem.

Magtape Card Reader

Figure l-5 Peripheral Devices

l-8

Introducing the R T-l I Computer System

Line Printer

Paper Tape Reader/Punch

VT-II Display

Figure l-5 Peripheral Devices (Cont .)

1-9

In traducing the R T-l I Cornpu ter System

SYSTEM
SOFTWARE

The hardware configuration of your own RT-11 computer system
includes the computer, the terminal, the storage medium, and any
other peripheral devices you choose to add.

System software is an organized set of supplied programs that effec-
tively transform the system hardware components into usable tools.
These programs include operations, functions, and routines that
make it easier for you to use the hardware to solve problems and pro-
duce results. For example, some system programs store and retrieve
data among the various peripheral devices. Others perform difficult
or lengthy mathematical calculations. Some programs allow you to
create, edit, and process application programs of your own. Still
others handle entire applications for you; these programs are strictly
business-related or laboratory-related.

As illustrated in Figure 1-6, system software always includes an oper-
ating system, which is the “intelligence” of the computer system.
Usually the system software includes one or several language proces-
sors; it sometimes also includes specific applications.

OPERATING

LANGUAGE

PROCESSORS

APPLICATION
PROGRAMS

Figure l-6 RT-11 System Software

l-10

Introducing the R T-l I Computer System

An operating system is a collection of programs that provides an
environment in which you can create and run programs of your own.
The operating system organizes all the hardware and software re-
sources of the computer system into a working unit and gives you
control.

The RT-11
Operating System

The RT-11 operating system comprises a monitor/executive program
for system control and supervision; several device handlers (pro-
grams), one for each of the supported hardware devices; a variety of
utility programs for program/data creation and manipulation; and
finally, the interfaces that are necessary to support several program-
ming language processors. The operating system is illustrated in
Figure l-7.

I HANDLERS EDITOR

\/ \

I FILE
MAINTENANCE I

/
\v

SUPPORT FOR 9 DEBUGGING

LANGUAGE

LIBRARIAN

Figure l-7 RT-11 Operating System

The monitor (executive) program is the interface between the system
hardware, the system software, and you. Part of the monitor func-
tion is to accept, process, and execute your instructions for control-
ling the system. A comprehensive set of monitor operating com-
mands allows you to direct, from the console terminal keyboard,
those system operations that you want to occur.

Device handlers are routines that provide the interface to the various
hardware devices that are part of the computer system. A handler
exists for every peripheral device that the system supports.

l-l 1

Introducing the R T-l I Computer System

Language
Processors

Utility programs cover a wide range of resources; such programs
allow you to create and edit text, maintain other programs, and help
you locate user-programming errors. Some specific utility programs
in the RT-11 operating system are the following:

0 An editor, which allows you to create and modify textual
material; this material could be the statements that make
up a computer program, a memo, or any text you wish to
create

0 File maintenance utility programs, which allow you to
manipulate and maintain your programs and data - to
transfer them between devices, to update them, and to
delete them when you are done with them

0 A debugging program, which helps you uncover and cor-
rect errors in your programs

0 A librarian, which makes it easy for you to store and re-
trieve often-used programming routines

0 A linking program, which converts object modules into a
format suitable for loading and execution

0 A source comparison program, which is used to compare
two ASCII files and to output any differences to a speci-
fied output device

0 A dump program, which outputs to the console or line-
printer all or any part of a file in octal words, octal bytes,
ASCII characters and/or Radix-50 characters.

The RT-11 operating system also provides support for several pro-
gramming languages and their respective language processors.

A language processor is a translating program that you use to process
a source program you have created. A language processor exists for
every programming language supported by the system, whether it is a
high-level language or a machine-level language.’

High-level languages, such as BASIC-l 1 and FORTRAN IV, are rela-
tively easy languages to learn and use. Since a single language state-
ment often performs a whole series of intricate computer operations,,

‘Language selection is discussed in Chapter 8 of this manual.

1-12

Introducing the RT-11 Computer System

high-level languages let you direct your attention to solving the prob-
lem at hand. They do not require that you understand how the com-
puter interprets the problem. High-level languages supported by the
RT-11 operating system, in addition to FORTRAN and BASIC,
include FOCAL-l 1, APL, and DIBOL, DEC’s interactive commercial
language.

Machine-level or assembly languages are available for users who
prefer to work at the instruction level of the computer. At this level,
you have control over such factors as program size and speed of exe-
cution. Machine-level languages do require that you be familiar with
the computer and the hardware devices of the system. RT-11 pro-
vides the MACRO-l 1 assembly language processor for those who
would rather work at this more intricate level.

The RT-11 operating system supports several applications packages.
These include a laboratory applications package for the standard
functions found in most laboratory environments. Another package
called GAMMA-l 1 is designed specifically for the needs of a nuclear
medicine laboratory. A scientific subroutine package (for FORTRAN
users) provides a large selection of mathematical and statistical rou-
tines commonly required in scientific programming. And a graphics
support package for BASIC and FORTRAN users provides display
features such as vectors, alphanumerics, points, multi-intensities and
blinks. Because of the specialized nature of these applications pack-
ages, they are not described further in this manual.

Application
Packages

The third and final component of a computer system is its documen-
tation. This includes manuals that tell how you use the software and
hardware of the computer system, plus any source listings of actual
programs that make up the operating system.

SYSTEM
DOCUMENTATION

Hardware manuals describe the devices in the computer system.
RT-11 hardware documentation includes a Processor Handbook that
describes the PDP-11 computer you are using, and a User’s Guide or
Maintenance Manual for each peripheral device in your computer
system. These manuals tell you how to operate the devices and give
you special programming information that you may need if you
intend to write device drivers or special system software that involve
the devices.

Hardware Manuals

1-13

Introducing the R T-l I Computer System

Software Manuals Software manuals1 describe the operating system and the language
processors. RT-11 software documentation falls into three major
categories: introductory or once-only manuals (intended to be used
once and then stored away); computer manuals (intended to be used
at the computer); and desk manuals (intended to be used at your
desk for reference purposes).

Once-only manuals include this manual and others that are needed
only when your system is initially installed. You may have little or
no occasion to use these manuals once your computer system is in
operation and you are familiar with its use.

Computer manuals are those manuals that tell you how to use the
computer system. They describe in detail command usage and
syntax, list summaries of system operations, and give the meanings
of system messages.

Desk manuals are those manuals that you continually use for refer-
ence as you write your own application programs. These manuals
include the general language reference manuals and the advanced pro-
gramming manuals that contain programming information specific to
the RT-11 computer system.

Source Listings

REFERENCES

Source listings are actual listings of the assembly-language code that
makes up the RT-11 operating system. These listings are very de-
tailed and are generally needed only if you intend to modify the
system software. They can be ordered on micro-fiche film from the
DIGITAL Software Distribution Center.

This completes a general introduction to the RT-11 computer sys-
tem. Subsequent chapters of this manual describe how you use the
various system components mentioned here to perform a series of
related computer operations. You begin in Chapter 2 by learning
how to start the RT-11 computer system.

Eckhouse, Richard H., Minicomputer Systems: Organization and Programming
(PDP-11). Englewood Cliffs, New Jersey: Prentice-Hall, 1975.

A guide to programming fundamentals, PDP-11 organization and structure,
and programming techniques. See Chapter 1.

‘All RT-1 l-related software manuals are listed in the RT-1 1 Documentation
Directory. Many of these manuals are provided with your system; others can
be ordered from the DIGITAL Software Distribution Center.

1-14

Introducing the RT-I 1 Computer System

Katzan, Harry Jr., Information Technology, The Human Use of Computers. Nex
York: Mason & Lipscomb Publishers, Inc., Petrocelli Books, 1974.

An introductory textbook covering basic computing concepts, program-
ming languages, and topics in computers and society. See Chapters 1, 2, 4,
5. and 10.

PDP-I 1 Computer Family, Products and Services. Maynard, Mass.: Digital Equip-
ment Corporation, 1977.

An overview of the available PDP-1 1 family products and services; includes
capsule descriptions of the various PDP-11 computers, peripherals, and
operating systems, and describes the supportive services provided by
DIGITAL.

PDP-I I Peripherals Handbook. Maynard, Mass.: Digital Equipment Corporation,
1976.

A technical summary of the available PDP-11 peripheral devices; includes
descriptions, specifications, programming, and interfacing information for
PDP-1 1 peripheral devices.

PDP-11 Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A hardware manual for the owners and users of the PDP-11 family of com-
puters and for those who will be using the PDP-1 1 assembly language
instruction set.

PDP-I1 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A general overview and introduction to available PDP-1 1 software, operat-
ing systems, and language processors.

RT-11 Documentation Directory (DEC-1 I-ORDDB-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

A listing and brief summary of current RT-1 l-related software documen-
tation.

Spencer, Donald D., Fundamentals of Digital Computers. Indianapolis, Kansas
City, New York: Howard W. Sams & Co., Inc., The Bobbs-Merrill Co., Inc.,
1969.

A discussion of the history and evolution of computers, computer appli-
cations, and fundamentals of computer use. See Chapters 1 through 12
and Chapter 20.

l-l.5

CHAPTER 2
STARTING THE RT-11 COMPUTER SYSTEM

Before you can use the RT-11 computer system to perform any
operations, you must start it. Starting the system involves turning
on the computer and the various hardware devices and loading the
appropriate software components into computer memory.

Within every PDP-11 computer is a physical, designated storage area
called memory. Computer memory is where system information and
data is temporarily loaded and stored for use during the various sys-
tem operations.

COMPUTER
MEMORY

Each time you use the computer system, there may already be in-
formation in computer memory left there by whoever used the
system last. For example, there may be the results or data of another
user’s program; there may be the results of a particular system opera-
tion; there may even be an entirely different operating system in
memory. For your use, computer memory must contain the RT-11
operating system, and specifically the RT-11 monitor program.
Thus, your first operation as a system user is to transfer the monitor
program from the disk device, where it was stored during system
installation, to computer memory, where you can use it. The process
of transferring the RT-11 monitor is called bootstrapping the system
and is the only system operation that requires you to use the op-
erators console on the front panel of the computer (see Figure 2-l).

Starting the RT-11 computer system requires that you know how to
operate your system’s hardware devices. Since you may not have had
the opportunity to use any of the devices yet, ask an experienced
user to help you the first time. Follow the instructions in the section
in this chapter entitled “Bootstrap Procedure.” If necessary, refer to
the various hardware manuals provided with your system and to any
special instructions that have been left by the DIGITAL representa-
tive who installed your system.

HARDWARE
CONFIGURATION

First read through the following material and fill in the appropriate
information where requested. You should be able to determine all
responses by checking the RT-11 System Generation Manual.

2-l

Starting the RT-11 Computer System

Figure 2-1 The Bootstrap/Computer Relationship

You must have the following materials to start the system and to
perform the exercises in this manual:

The disk device containing the RT-11 operating system
(called the system volume); a system volume may have
been created specifically for your use with this manual

The volume containing the FORTRAN and/or BASIC
language processors if these languages are not stored on the
system volume (available only to FORTRAN and BASIC
users)

A volume for program storage (for example, magtape or
another disk); this volume should contain no important
information since all information on it will be erased
during a later computer exercise

A copy of the RT-11 System Generation Manual

NOTE

Hardware configuration information, along with instruc-
tions for starting (bootstrapping) your RT-11 system,
should have been provided by the DIGITAL representative

2-2

Starting-the RT-11 Computer System

who initially installed your system. This information
should appear in the RT-11 System Generation Manual
and should be adequate for you to answer all the questions
asked here. If you have trouble, see Appendix B, “Sugges-
tions for Bootstrapping the System.” Do not continue to
any other chapter in this manual until you understand the
following configuration information and can bootstrap the
system yourself.

1. What kind of terminal device are you using (for example,
LA36 DECwriter II, VT52 video terminal, etc.)?

2a. Does your computer operator’s console have pushbuttons
or switches?

2b. How much memory does your computer have?

3a. What kind of system volume are you using (for example,
RK06 disk, RX01 diskette, etc.)?

3b. What is the 2-letter code for this volume (typical codes are
given in Table 2-l ; respond with the code for your own
volume)?

Table 2-l Representative System Volumes

Volume Code

RX01 diskette DX
RK05 disk RK
RK06 disk DM
RP02/03 disk DP
RF 11 disk RF
RJS03/4 disk DS
TC 11 DECtape DT

4a. What volume are you using for program storage (for
example, TM 11 magtape, RKOS disk)?

Terminal

Computer

System Volume

Storage Volume

4b. In which device unit will you use this volume (0, 1, etc.?
choose any available device unit)?

2-3

Starting the RT-11 Computer System

Optional Devices
and Supported
Languages

5.

6.

What peripheral devices are part of your system (for
example, line printer, magtape, VT1 1 display hardware;
list all devices other than the terminal and the computer)?

What programming languages does your system support
(MACRO- 11 or BASIC- 11, for example)?

BOOTSTRAP
PROCEDURE

Once you have determined your hardware configuration, you are
ready to bootstrap the system. The purpose of the bootstrap
procedure is to load and start the RT-11 monitor in computer
memory, making the RT-11 computer system available for you to
use.

1. Turn the terminal to an on-line condition. If there is a
baud rate switch, set it to 300.

2. Make sure the computer power is on and that the
computer is not already in use. Stop the computer:

0 If your operator’s console has switches, set the
switches to HALT, then ENABLE

0 If your operator’s console has pushbuttons, locate the
button labeled CNTRL; hold it down and push the
button labeled HLT/SS; then release both.

3. Place the system volume in its corresponding device unit 0.
Ensure that the system volume is write-protected (for all
except RX0 1 diskette, which is always write-enabled).

4. Place the storage volume in the device unit noted in
question 4b in the Hardware Configuration section. Ensure
that this volume is write-enabled.

5. Check the operator’s console on your computer (refer to
question 2a in the Hardware Configuration section). If
your console has pushbuttons, continue. Otherwise, go to
step 8.

6. Locate the pushbutton labeled CNTRL, hold it down and
push the button labeled BOOT. Check the terminal printer
or screen. If there is no response, read the section in
Appendix A entitled “Using a Pushbutton Console to
Bootstrap”; otherwise continue to step 7.

2-4

Starting the RT-11 Computer System

7. Your terminal printer or screen should show several
numbers followed by:

Type on the terminal keyboard the 2-letter code that
represents your system volume (from question 3b in the
Hardware Configuration section) followed by a carriage
return (the RETURN key), represented throughout the
text by the characters ml. Be sure to use the SHIFT key
so that you type upper-case characters. For example, for
RX0 1 diskette, type:

Continue to step 11.

8. Check your switch console. If it has a 3-way dial labeled
DC OFF, DC ON, and STAND BY, go to step 9. If it has
three individual switches labeled DC ON/OFF, ENABLE/
HALT, and LTC ON/OFF, go to step 10. If it has a long
row of switches across the entire console, read the section
in Appendix A entitled “Using a Switch Register Console
to Bootstrap”.

9. Set the 3-way dial to DC ON. Then locate the BOOT
switch (to the left of the dial) and raise it. Go to step 11.

10. Put all three switches in the up position; then move the DC
ON/OFF switch down and up and check the terminal
response.

0 If it is:

4

type on the terminal keyboard the 2-letter code that
represents your system volume (from question 3b in
the Hardware Configuration section) followed by a
carriage return (the RETURN key), represented
throughout the text by the symbol <RET). Be sure to
use the SHIFT key so that you type upper-case
characters. For example, for RX01 diskette, type:

x:1x (RET)

1 The RK05 disk is an exception. Hardware bootstraps use “DK”, not “RK”,
for RK05.

2-5

Starting the RT-11 Computer System

11.

Continue to step 11.

0 Any other response indicates that you must type the
bootstrap on the terminal keyboard. Read the section
in Appendix A entitled “Typing the Bootstrap on the
Terminal Keyboard.”

If your system has been correctly bootstrapped, a message
prints on the console terminal. Check this message: it
should read :

RT-1 1SJ VO3-xx (the xx’s have developmental
significance only and can be
ignored)

If this version number (with the exception of the xx’s)
does not appear, read the section in Appendix B entitled
“Suggestions for Bootstrapping the System.”

The proper response indicates that the monitor component
of the RT-11 operating system is active. Set the system
volume to a write-enabled condition (for all except RX01
diskette, which is always write-enabled).

You should now direct your attention to the console terminal since
system interaction continues on this device.

REFERENCES DECscope User’s Manual’ (EK-OVTSX-OP-OOl), Cross Products, 1975

A hardware manual for the owners and operators of the DE&cope (VT50)
family of video terminals and for those who will be programming com-
puters to interact with these devices.

PDP-11 Processor Handbook, Maynard, Mass.: Digital Equipment Corpora-
tion, 1975.

A hardware manual for the owners and users of the PDP-11 family of com-
puters and for those who will be using the PDP-11 assembly language
instruction set.

RX8/RXII Floppy DiskSystem MaintenanceManual’ (EK-ORXOl-MM-PRE2),
Maynard, Mass.: Digital Equipment Corporation. 1975.

A hardware manual for the owners and operators of RX01 diskettes and
for those who will be programming computers to interact with this device.

RT-11 System Generation Manual (DEC-I l-ORGMB-A-D) and R T-l 1 System
Release Notes (DEC-1 l-ORNRB-A-D). Maynard, Mass.: Digital Equipment
Corporation, 1977.

Two RT-1 l-specific software manuals that contain instructions for in-
stalling, customizing, and starting the RT-1 1 computer system.

1 Used as an example; consult hardware user or maintenance manuals specific to
your system.

2-6

CHAPTER 3
INTERACTING WITH THE RT-11 COMPUTER SYSTEM

Interaction with the RT-11 computer system involves an exchange of
information between you (the user) and the software operating
system. The exchange may be active, with you dictating command
information from the terminal keyboard and the system responding
immediately; or it may involve the storing of information on mass
storage volumes for later use.

During the bootstrap procedure you activated the RT-11 computer
system by loading and starting the monitor program in computer
memory. One of the functions of the monitor program is to provide
you with the capability to use the console terminal. Since the
console terminal can perform both input and output operations, it
is used to interface between the system and the user. With it, you
can :

0 Type the commands that control system operation

0 Receive messages and responses from the system

All console terminals have a keyboard used to enter information, and
a paper output device or video screen used to echo characters typed
at the keyboard and to print system messages and responses. Fig-
ure 3-l shows the two most commonly used terminals, the LA36 and
the VT5 2.

The difference between these two terminals occurs in their output
mechanism. While the LA36 terminal has only a paper printer, the
VT52 has a video screen. The screen and the paper printer serve the
same purpose - they show user input and system responses; how-
ever, paper output can be saved for later use while screen output is
temporary. The keyboards of both terminals are the same and are
shown in Figure 3-2. Also shown in this figure is an LA30 (VT05)
keyboard so that you can note some of the differences found in the
keyboards of older terminals.

USING THE
CONSOLE

TERMINAL TO
EXCHANGE

INFORMATION

3-l

Interacting wth the RT-11 Computer System

VT52

LA36

Figure 3-1 LA36/VT52 Terminals

3-2

Interacting with the RT-11 Computer System

VT52/LA36 Keyboard

VT05/LA30 Keyboard

Figure 3-2 Keyboard Layouts

Using ‘Figure 3-2 as a guide, study your own terminal keyboard.
First, notice that the keys for the alphabetic characters are posi-
tioned in the same way as on most standard typewriters. The SHIFT
key allows you to select between numeric and special characters and
between upper- and lower-case charactersl. The position of the
numeric and special characters varies somewhat among the different
terminals so you may need to hunt for a particular key until you
become familiar with your own terminal.

Locate the DELETE key (LA36/VT52 terminals) or the RUBOUT
key (LA30/VT05 terminals). These keys perform the same function:
they are used to correct a typing mistake. Pressing the key once
cancels the last character typed. Pressing it twice cancels the last
two characters, and so on, back to the beginning of the line.

1 With the exception of system messages and one other exception explained in
Chapter 5, the RT-11 computer system uses upper-case characters exclusively.

3-3

Interacting with the RT-11 Computer System

USING
MASS STORAGE
VOLUMES
TO STORE
INFORMATION

Locate the TAB key. Tab stops on a computer terminal are posi-
tioned every eight spaces across the line, beginning at column 1.
Pressing the TAB key moves the character pointer (that is, the posi-
tion on the line where the next character will be typed) to the
beginning of the next tab stop.

The key marked RETURN (LA36/VT52 terminals) or CR (LA30/
VT05 terminals) performs a carriage return; it both returns the
character pointer to the beginning of the line and advances it to the
next line. This key is used to terminate the line currently being typed
and to terminate certain RT-11 system commands.

Locate the ESC (SEL) key and LINE FEED key (LA36/VT52 ter-
minals) and ALT and LF keys (LA3O/VT05 terminals). These are
special command terminators that are described later in Chapters 5
and 14.

An important key is the CTRL key. The CTRL key is always used in
conjunction with another character key to perform one of several
specific system operations. CTRL commands are explained in
detail when you begin to use them later in the manual.

Table 3-l reviews the console terminal keyboard characters. Keys not
specifically mentioned are not used by the RT-11 computer system
and can be ignored.

You will. have ample opportunity to become familiar with your ter-
minal keyboard as you perform the demonstrations in this manual.

Mass storage volumes provide an area (apart from computer memory)
to keep information for later use. The information may be user
application programs, data needed by a program, the results of a
program run, textual infdrmation, batch-type programs, and so on.
As an example, the RT-11 operating system is stored on a mass
storage volume called the system volume. When information is
needed, as it was during bootstrapping, you can transfer the informa-
tion from the storage volume into computer memory, where it can
be used.

Before you can access the information stored on any storage volume,
however, you must first insert the volume (the medium) into its

3-4

Interacting with the RT-11 Computer System

Table 3-l Keyboard Characters

Key Function

ALT
ALTMODE

See ESC

BACK SPACE

BREAK

CR

CTRL

Ignored during normal system use

Ignored during normal system use

See RETURN

Control; part of several two-key command
combinations that perform specific system
functions

DELETE

ESC

Erase; cancels the last character typed

Command terminator; terminates an
editing command string; typed twice, trans-
mits the command(s) to the computer and
performs a carriage return

LF
LINE FEED

Command terminator; terminates certain
system commands; transmits the command
to the computer and performs a carriage
return

r- NEW LINE

REPEAT

RETURN

RUBOUT

SHIFT

See LF

Ignored during normal system use

Line terminator, command terminator;
terminates the current line; terminates
certain system commands; transmits the
command to the computer and performs a
carriage return

11 Selects the uppermost of two characters

Moves the character pointer ahead to the
beginning of the next tab stop

Transmits the alphanumeric or special
character to the computer

3-5

Interacting with the RT-11 Computer System

corresponding device unit (drive) which is the hardware device con-
nected to the computer. Once a volume has been inserted into a
device unit, the unit’s symbol also identifies the volume. There may
be more than one device unit for any given volume, in which case
each individual device unit is numbered 0, 1, 2, and so on. As you
learned in the bootstrap procedure, the system volume is inserted
in device unit 0 and remains in this device unit as long as you are
using the system. Other storage volumes can be inserted in any
available (corresponding) device units. Figure 3-3 illustrates several
mass storage volumes.

Diskette

Diskette

Figure 3-3 Mass Storage Volumes

3-6

Interacting with the RT-11 Computer System

---_-- - __- _-

RP03

RK05

“ - - - - - - - - - - I I ” - -
\ ,

Magtape

Figure 3-3 Mass Storage Volumes (Cont.)

3-7

Iuteractirlg with the RT-11 Computer System

File Storage

Mass storage volumes are capable of holding large amounts of in-
formation. However, most volumes are physically small enough so
that you can transport them away from the system, to your desk
perhaps, or to another computer system. In addition to all disks
(shown earlier in Figure l-4). magtapes and cassettes are also mass
storage volumes.

You store information on a mass storage volume in the form of files.
Each file is simply a logical collection of data. Files may be parts
of programs or entire programs, program input data, or text such as a
letter or report. Whatever its content, each file is treated as a unit
and occupies a fixed physical area of the volume.

Every file on a mass storage volume has a unique name that is com-
posed of a file name and file type. The file name and file type serve
to identify the file and distinguish it from other files on the volume.
You can instruct the system to print on your terminal the names of
all files on any given volume. The resulting list is called the volume
directory listing. By referring to the volume directory, you can find
the name, size, and creation date of each file residing on that volume
and erase old files that you no longer need. Whenever you perform
an operation that affects the contents of the volume, a new volume
directory reflects the change.

File Protection uccasionally, after many files are added to a storage volume. the
volume runs out of room for new information. The storage volume
may also become damaged, lost, stolen, or worn through use. For
these reasons it is a good idea to have several extra storage volumes
on hand and to protect your more important files against accidental
erasure or loss.

One way to protect a file is to make a copy of it on a second storage
volume. The copy is called a backup file and is your security in case
the original file (or its respective storage volume) becomes damaged
or lost.

In addition, some storage volumes provide a mechanism that pro-
tects files against accidental erasure. This mechanism is generally a
switch on the volume itself, or on the device unit, that you can
manually set to a write-protect or write-enable condition (as you did
during bootstrapping). When the volume is write-protected, informa-
tion can be copied only from the volume to computer memory or to

3-8

Interacting with the RT-11 Computer System

another volume that is write-enabled. A volume that is write-enabled,
on the other hand, additionally allows information to be copied from
memory back to the volume.

The RT-1 1 operating system itself also provides a protection feature.
This optional feature requires that you confirm certain system com-
mands that might otherwise erase important information. The system
also issues prompting messages to ensure that you provide the proper
file information when it is needed by a command.

In Chapter 4 and succeeding chapters you will use the terminal to
enter command information and you will start performing file copy
and other system operations. Before you continue, make sure that
there is a backup copy of your system volume. If you cannot locate
one, read Appendix B, Backing Up the System Volume, before going
on.

DECscope Users’ Manual’ (EK-VTSX-OP-OOl), Maynard, Mass.: Digital Equip-
ment Corporation, 1975.

A hardware manual for the owners and operators of VT-50 and VT-52
video terminals and for those who will be programming the computer to
interact with these devices.

LA36/LA35 DECwriter II User’s Manual’ (EK-LA3635-OP-OOl), Maynard,
Mass.: Digital Equipment Corporation, 1975

A hardware manual for the owners and operators of the LA36/LA35
DECwriter II and for those who will be programming the computer to
interact with these devices.

RT-11 System Message Manual (DEC-1 1-ORMEB-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

An explanation of system messages that may occur during normal system
use; includes required user actions.

REFERENCES

1 Used as an example; consult hardware user or maintenance manuals specific to
your system.

3-9

CHAPTER 4
USING THE MONITOR COMMAND LANGUAGE

During the bootstrap operation, the RT-11 monitor was copied into
computer memory and started. The RT-11 monitor is actually many
different components working together to supply basic system func-
tions. For example, part of the monitor is called the resident monitor
and provides console terminal service, a system volume device
handler, and centrally-required program code to provide a working
environment for both system and user programs. The resident moni-
tor is so named because it always remains in computer memory
regardless of other system operations that may be occurring. Other
parts of the monitor are brought into memory from the system
volume as needed. These include the user service routine (USR)
which provides support for the RT-11 file system, and the keyboard
monitor (KMON) which controls terminal keyboard jnteraction.
From your standpoint, the keyboard monitor is the most visible part
of the system software. Among other services, it supplies the monitor
command language that you use to control system operations.

The monitor command language is a set of English-like command
words that you type on the terminal keyboard to initiate and control
system operations. There are two general formats that you can use to
type a command; one is a long format and the other a short format.
The long format causes the system to print prompting messages.
These messages ask you to supply specific information, such as file
names and device names. The long format is helpful until you be-
come familiar with the commands. You will then probably prefer to
use the short format. This format allows you to enter all required
information on a single command line; prompts are issued only if
you neglect to supply necessary information. Both formats are
demonstrated throughout this manual.

ENTERING
COMMAND

INFORMATION

You terminate all monitor commands by typing a carriage return.
That is, after you type the required command information, you press
the carriage return key (represented in this manual by (RET)). This
instructs the monitor to initiate the command and to perform the
operation.

The monitor prints a period at the left margin of the terminal printer
or screen whenever it is waiting for you to type a command. The

4-1

Using the Monitor Command Language

period is your cue that the system is in monitor command mode and
ready to accept a monitor command. Check the output on your ter-
minal printer or screen. You should see at the left margin:

RT-11 SJ VOTXX

RT-1 1SJ identifies the RT-11 monitor called the single-job (SJ)
monitor. Following this is the version (and update) number of the
system in use, in this case, Version 3. The period on the next line
indicates that the system is in monitor command mode and is waiting
for you to type a monitor command.

General Command
Format

Whenever you issue a monitor command, you must supply certain
information needed to guide command processing. This information
includes the following (square brackets indicate optional qualifiers
and characters):

COMMAND[/option] First you indicate, by command,
which system operation you want ini-
tiated. Command options are available
to allow you to alter the normal
(default) operation.

INPUT[/option] You next indicate, by device and tile
name, input information that is to be
used during the operation. The system
volume serves as the default input
device. You must explicitly indicate
other volumes that you want used for
input, and you must usually indicate
the file names and file types of the
input files. Input file options are avail-
able to allow you to alter assumed
(default) input operations.

OUTPUT[/option] ’ Finally you indicate, by device and
file name, output information that is
to be created as a result of the opera-
tion. The system volume serves as the

‘OUTPUT[/option] is not always used; sometimes output must be specified as
COMMAND[/option] INPUT/OUTPUT:filespec.

4-2

Using the Monitor Command Language

default output device. You must ex-
plicitly indicate other volumes that
you want used for output, and you
must usually indicate the file names
and file types of the output files to be
created. Output file options are avail-
able to allow you to alter assumed
(default) output operations.

As mentioned earlier, there are two ways you can type this command
information on the terminal keyboard; both formats are illustrated
below:

Long Command Format (system prompts for specific information)

.COMMAND [/option] (RET)
INPUT PROMPT? INPUT[/option] (RET)
OUTPUT PROMPT? OUTPUT[/option] (REI)

Short Command Format (no prompts)

.COMMAND [/option] INPUT [/option] OUTPUT [/option] (RET)

Notice that you use a slash (/) character to separate an option from
the portion of the command that it qualifies, and a carriage return
(RET) to terminate each individual command line. When you have
supplied all the necessary information, the carriage return signals the
monitor to execute the command. You may use whichever format
you wish. Both command formats are demonstrated throughout the
manual.

In addition to monitor commands, there are several special function
commands, called control commands, that you type by first pressing
the CTRL key on the terminal keyboard, and then (while holding it
down) typing the appropriate letter key of the command. These
commands require no terminator; the system performs the function
as soon as you type the command.

Control
Commands

Control commands are special function commands used to correct
typing errors, to interrupt program execution, to inhibit terminal
output, and other similar special system operations. They are de-
scribed in the manual as you need to use them.

4-3

Using the Monitor Command Language

Recreating
the Examples

During the course of this chapter, and throughout the remainder of
the manual, you’will use a number of monitor commands to perform
some common system operations. For example, you will list the
directories of device volumes, copy files between devices, create files,
and execute system and user programs. You perform these opera-
tions by recreating on the terminal keyboard the examples already
provided for you.

You should first read the entire explanation of a command to be
aware of its format, the operation it performs, and the options that
are available. Then type the command on the terminal keyboard
exactly as you see it used. Characters that you type appear in the
demonstrations in red print. Characters that are system responses
are shown in black print.

Table 4-l lists symbols that you will see used throughout the demon-
strations. These symbols represent various keys on the terminal key-
board. When you see one of these symbols in a command line, type
the appropriate key on the keyboard.

Table 4-l Keyboard Symbols

Symbol Type

(RET) carriage return key

-a line feed key

0 space bar (once for each time the symbol is shown).
Assume that you should type a single space unless
you are otherwise instructed; the space symbol is
used only if there is doubt as to the number of
spaces to type.

(TAB) TAB key (once for each time the symbol is shown)

<DEL) DELETE (RUBOUT) key (once for each time the
symbol is shown)

(ESC) ESCAPE (ALTMODE) key (once for each time the
symbol is shown)

(CTRL/x) CTRL key (hold down CTRL key while typing the
letter character (x))

4-4

Using the Monitor Command Language

All commands that you give the system are typed on the terminal CORRECTING
keyboard. If you make a mistake while typing a command, there are TYPING
two easy ways that you can correct it. MISTAKES

One way to correct a typing error is to use the DELETE key on the
keyboard. Pressing the DELETE key once cancels the character just
typed; pressing it a second time cancels the next to last character
typed, and so on, from right to left, until the beginning of the cur-
rent line is reached. Then additional DELETES are ignored.

The second way to correct a typing error is to use a special control
command, CTRL/U. Typing this command once is equivalent to typ-
ing as many DELETES as are needed to cancel every character in the
current line.

Type the following characters on the keyboard - the letters DABE,
followed by two DELETES, followed by the letters TE - and notice
the system’s response:

The monitor echoes each deleted character and encloses them within
backslashes. As far as the monitor is concerned, the only characters
you have typed are DATE.

Thus, your current line is DATE. Continue by typing a CTRL/U.
Remember to first press the CTRL key and then type the U key
while holding the CTRL key down; no carriage return is necessary.

El CTRL/U

Notice that CTRL/U echoes on the terminal printer or screen as YJ.

+ 13 19 B E: \ E: B ‘\ 7’ I: “’ 1.1

4-5

Using the Monitor Command Language

INITIAL MONITOR
COMMAND
OPERATIONS

Using VT1 1
Display Hardware

El GT

All characters on the line are effectively cancelled and the character
pointer is moved to the beginning of a new line so that you can enter
another command. You are still in monitor command mode even
though no prompting period appears at the left margin.

Once the carriage return or line feed key is pressed, the previous line
cannot be corrected via DELETE or CTRL/U.

These two methods are commonly used to correct typing errors
made at the keyboard. You can choose whichever method seems
most convenient.

The kinds of command operations that you usually perform immedi-
ately after the monitor is bootstrapped are those that set up initial
conditions such as the current date and time of day, and those that
initialize and prepare the system for future operations such as file
transfers. If your system has VT1 1 display hardware and you decide
that you want to use it, you should also enable (turn on) the graphics
display screen.

Display hardware on an RT-11 computer system consists of a
cathode ray tube that allows programs to use graphics displays. If
your system has display hardware] , which is illustrated in Figure 4-1,
you can use the graphics screen in place of the terminal printer or
screen if you wish.

NOTE

Check question 5 in the Hardware Configuration section
of Chapter 2 to determine if your system has display hard-
ware. If you do not have display hardware, go on to the
next section in this chapter, Entering the Date and Time-
of-Day.

The monitor command that enables the graphics screen is the GT
command. The GT command is used to change the condition of the
graphics display. In this case, you will use it to activate the graphics
display hardware so that the VT1 1 display screen replaces the con-
sole terminal printer or screen as the terminal output device.

‘Video terminal screens are not considered graphics display hardware.

4-6

Using the Monitor Command Language

Figure 4-l VT1 1 Display Hardware

Type the following on your terminal keyboard (if necessary, refer to
Table 4-l to review the special symbols):

Long and Short Command Format

If your system does not have display hardware, the monitor prints a
message’ on the terminal printer or screen informing you that the
command is illegal for your system configuration:

Otherwise, the command is accepted and you should notice that all
character echoing and system responses now appear on the graphics
screen instead of the terminal printer or screen. A period appears
there, indicating that the system is waiting for another command.
The character pointer is visible as a blinking rectangular- or L-shaped
cursor situated after the period.

‘The meanings of all system messages are listed in the RT-11 System Message
Manual.

4-7

Using the Monitor Command Language

El CTRL/E

Like the terminal screen, output that appears on the graphics screen
is temporary. Once the screen is filled, lines are rolled off the top and
are lost to view. However, if your terminal has a printer, a special
control command allows you to control console terminal output so
that it appears on both the graphics screen and the terminal printer
simultaneously. In this manner, you can direct selected portions of
terminal output, directory listings for example, to be both displayed
and printed at the same time. The advantage of this is that the dis-
play copy is eventually lost but you create a printed copy for later
use.

The control command that provides this function is CTRL/E. It is
initiated by holding the CTRL key down while typing the E key. No
carriage return is necessary. When you type this command, no char-
acters echo on the graphics screen, but you should notice that all
subsequent characters (both input and output) appear on both the
graphics screen and the terminal printer.

Thus, if your terminal has a printer and you wish to use the printer
in addition to your VT1 1 graphics screen, type once:

(CTRI./E) (Remember, this command does not echo.)

Now type the following and notice where the characters echo:

To disable the printer at any time so that character echoing occurs
only on the graphics screen, type another CTRL/E command:

Finally, to return terminal output control to the terminal, disabling
the graphics screen, use the GT OFF command; this changes the ter-
minal device handler back to its original output setting:

Long and Short Command Format

Decide now whether to use the graphics screen for the remaining
demonstrations. If so, use the GT ON command to enable the
graphics screen, and remember that the CTRL/E command is avail-
able when you wish to produce simultaneous output.

4-8

Using the Monitor Command Language

Entering the current date and time-of-day are record-keeping system
operations; they help you later identify when other system opera-
tions were performed.

Entering the Date
and Time-of -Day

For example, by entering the current date you instruct the system to
assign this date to all files you create. The date will also appear in
volume directories and listings produced by the various language
processors and utility programs. If your system has a clock, by speci-
fying the current time-of-day you instruct the system to keep track
of time based on the time you set. The current time is printed on
listings when they are produced, and may also be used to control
certain program operations.

Enter the date by typing the monitor DATE command as follows
(there is only one format):

Long and Short Command Format

* I:1 fq ‘I’ 1.;: 1. :,3 “.’ ,.I [..I (4 ..‘. ‘7 ‘1 (RET)

This sets the date to June 13, 1977. Since this date is not current,
reenter the correct date using the same command format:

Typing the new date overrides the previous date entered.

The monitor TIME command is used to set the time-of-day. Time
must be specified in 24-hour notation. The system then keeps track
of time in hours, minutes, and seconds, based on the initial time that
you enter in the command. Enter the time as follows (there is only
one format) :

Long and Short Command Format

If your system does not have a clock, the monitor prints a message
on the terminal informing you that the command is not valid for
your system configuration:

El DATE

El TIME

‘ i l ’ K pj [) N “.. 1::’ .“’ l-1 (3 C! I. (3 C! k.

4-9

Using the Monitor Command Language

Assigning Logical
Names to Devices

Otherwise, the time is set to 3:Ol p.m. If your system has a clock,
reenter the correct time, using the same command format:

Typing the new time overrides the previous time entered.

To check the time and date at any time while you are using the sys-
tem, simply type either the DATE command or the TIME command,
followed by a carriage return only:

Long and Short Command Format

The system responds by printing the date or the time based on the
information you previously entered.

Setting the time is temporary. If you want it to be kept current, you
must reenter it whenever you bootstrap the system.

Each hardware device in the RT-11 system is identified by a 2-char-
acter code name. These names, listed in Table 4-2, are defined in the
system software and are recognized and used by the operating sys-
tem. These are the device names that you generally use in command
input and output lines. However, you may want to temporarily
change any of these device names for a variety of reasons. The fol-
lowing paragraphs describe both using the physical device names
shown in Table 4-2 and assigning logical (temporary) device names to
devices.

Two additional logical device names are used. These special names
are described in Table 4-3.

You use device names in the input and output portions of a com-
mand line to identify where input information can be found and

4-10

Using the Monitor Command Language

Table 4-2 Physical Device Names

Code Device

CR:
CTn :
DMn:
DPn:
DSn:
DTn:
DXn:
LP:
MMn:
MTn:
PC:
RF:
RKn:
TT:

Card R.eader
Cassette
RK06 Disk
RP02/03 Disk
RJS03/4 Disk
DECtape
RX0 1 Diskette
Line Printer
TJU 16 Magtape
TM 11 Magtape
Paper Tape Punch/Reader
RF1 1 Disk
RKl 1 Disk
Console Terminal Keyboard/Printer

Code

SY:

Table 4-3 Special Logical Device Names

Device

The volume from which the monitor was boot-
strapped; i.e., the system volume.

DK: The default storage volume (initially the same as
SY: ; i.e., the system volume).

where output information will be sent. If a file is involved, you also
include its file name and file type in the following format:

devicename:filename.filetype

The device name is followed by a colon, and is always separated from
any tile name and file type by a colon. The device name is generally
one of the codes listed in Tables 4-2 and 4-3. When you use a device
name in any command, you must also include the device unit num-
ber (represented by the letter ‘n’ in Table 4-2) unless the number is
0. The system assumes unit 0 of the device if no unit number is
given. Thus, diskette unit 0 is DX: or DXO: ; diskette unit 1 is DXl :;
RK: disk unit 2 is RK2: ; and so on. Note from Table 4-3, that you

4-11

Using the Monitor Command Language

El ASSIGN

can use the device codes SY: or DK: for your system volume in addi-
tion to its standard device name. However, since the system volume
is initially the default storage volume for all operations, you do not
need to use a device name for your system volume.

The names listed in Tables 4-2 and 4-3 are the device names defined
within the system software. However, you can temporarily change
any of these name assignments, either by reassigning existing names
to different devices, or by assigning new logical names of your own
choosing to devices.

There are many reasons why you might want to temporarily change a
device name and assign it a logical name. You may, for example, have
a program that is written for a specific device. If that particular
device is not available on your system, you need only assign its name
to a device that is available. The program then uses the new device
instead.’

Since not all RT-11 users have access to the same kind of storage
volume, you are instructed to assign the logical name VOL: to what-
ever volume you are using for storage. After you make this assign-
ment, subsequent command lines can be the same for everyone using
this manual.

Similarly, the special logical device name DK:, presently assigned to
your system volume, could be assigned to any kind of storage vol-
ume. Not only would DK: signify your storage volume regardless of
its physical device name, but you could also avoid typing DK: since
it is the default storage volume for most commands (only the R com-
mand requires that the file specified must be on the system volume
SY :).

To assign a logical name to your storage volume, first determine its
physical device name. Check questions 4a and 4b in the Hardware
Configuration section of Chapter 2 to see which device and which
device unit you are using for your storage volume. Translate this into
the appropriate name and number using Table 4-l as a guide.

Use the monitor ASSIGN command to change this physical name to
a logical name. Substitute for physical-device-name in the command

‘This is called device independence.

4-12

Using the Monitor Command Language

lines below the physical name and device unit number for your stor-
age volume (for example, for RK05 disk unit 1, substitute RKl):

Long Command Format

Short Command Format

Once the assignment is made, the system recognizes the logical name
VOL: as the device name for your storage volume. This is the only
logical assignment you need to make. Since you are not changing the
DK: assignment, the system volume remains the default device for all
I/O operations.

As you continue to use the system, you may well make many device
assignments and deassignments. To check the status of all assign-
ments made during a computer session, you can use the monitor
SHOW command to print on your terminal a list of all the logical
assignments currently in effect. For example, use the SHOW com-
mand now to check the status of the assignment just made:

Long and Short Command Format

El SHOW

Check the list printed on your terminal to make sure that the code
VOL: has been assigned to your storage volume. The letters VOL:
should follow the appropriate device name in the list, similar to the
response shown below in which VOL: represents disk unit 1:

4-13

Using the Monitor Command Language

Logical device assignments are temporary. Thus, if you want a par-
ticular device assignment to always remain in effect, you must re-
assign it each time the system is bootstrapped.

Listing Volume
Directories

I

Both your system volume and your storage volume have directories,
which are a compiled list of all the files stored on the volume. You
can print a volume directory on your terminal, using the monitor

I DIRECTORY command.’ For example, to list the directory of your

DIRECTORY
system volume, type:

I Long and Short Command Format

l 1:t : I : I:< 1:: : [: : ‘I’(j I:< y (RET) (The system volume is the default
device.)

El CTRL/O
Since the directory of the system volume may be quite long, after
approximately 10 lines have printed on the terminal, type:

This special control command echoes as -0 and inhibits the re-
mainder of the listing output from printing on the terminal. When
control returns to monitor command mode, look at the directory

‘Users of VT1 1 display hardware may wish to use the CTRL/E command to
enable both the graphics screen and the terminal printer for the following
exercises.

4-14

Using the Monitor Command Language

listing. At the top of the listing is today’s date, as you entered it
earlier in the DATE command. Following the date is a list of the
files on the volume. Notice the 2-column format of each line in the
directory:

I 3 - J I., ,-I- 7 7
RKMNSJ * SYS
RKMNXM. SYS
UMMNSJ t SYC;
DMMNXM. SYS
DXMNF’B 4 CiYCi
I:lXMNS J t BL..
DTMNFB t SYS

El 6 0 2 '- <.I I.., l-1 '- 7 7 IKKMNFB l S Y S Y7 02-Jun.-77
.I 0 6 0 2 -- J I_, r, ‘-7 7 IIKMNSJ t HI- 0 3 0 Z--J II ri .-. 7 7

tjjfj 0;~~~-Jl.J,“,~-‘77 11 MM N F P t S Y 5 Y I3 0 2 "- ,I 1.1 l-1 '-' 7 7
I. 0 8 0 2 ‘“’ ..I 1-1 I-, ‘- 7 7 DXMNSJ . SYS 8 6 0 2 “.’ J 1.1 l-l ‘-’ 7 7

y.7 02 -..,I,, Jn.-.77 IIXMNXM. CiYS I.07 02"-Jun-77
El3 02-,.Jur1~-77 DTMNSJ . SYCi Ej 6 0 2 _-..I I.., r, ‘-’ 7 7
‘3 7 0 2 ‘- ‘- 0

:l 3 7 F' i 1 e :i I L3 8 5 7 H 1. 0 c: C. (ii
YOS Free hl.ocl~.s

First the file name appears, followed by a dot and a file type that is
frequently used to identify the file’s format. For example, SYS
represents a system file; other RT-11 file types used to represent dif-
ferent kinds of files are listed in Table 44. After the file type is a
number that indicates the size of the tile. The size is given in blocks,
a term used to designate a standard amount of information. A file
that is 1 to 10 blocks long is fairly small, while a file over 100 blocks
in length is quite large. The date on which the file was created is
shown at the right. This space is empty if a date was not specified
(via the DATE command) on the day the file was created. If you let

Table 4-4 File Types

File Type Meaning

.BAC

.BAK

.BAS

.BAT
.COM
.CTL
.DAT
.DBL
.DIR
.FOR
. LST
.MAC
.MAP
.OBJ

.REL

.SAV

.SML

.SYS

BASIC compiled file
Editor backup file
BASIC source file
BATCH source file
Indirect command file
BATCH control file
BASIC or FORTRAN data file
DIBOL source file
Directory listing file
FORTRAN source file
Listing file
MACRO source file
Linker map file
MACRO, FORTRAN, or DIBOL object output
file or library file
Executable foreground program tile
Executable background program file
System MACRO library
System files and handlers

4-15

Using the Monitor Command Language

the directory list to completion, at the end you are told how many
files are on the volume, their total length, and the number of free
blocks available for your use.

You can also obtain an abbreviated directory, which omits file
lengths and dates and lists only file names and file types in S-column
format. To do this, you use the DIRECTORY command with its
/BRIEF option. Type the following, and after several lines have
listed, interrupt the directory by typing two CTRL/C command char-
acters. This double control command echoes two ^Cs, requesting the
running program to abort immediately, independent of what the pro-
gram is doing (one CTRL/C aborts an executing program waiting for
input from the console terminal). Control returns to monitor com-
mand mode.

Long and Short Command Formats

l 1.l.I I - E I . C ; 11:)11Y/f.!l~ Llll V I I I : * . * m

1. :3 ‘- .J I.1 l-l ‘.” 7 7

Fi’KMNSJ.SYS RI(;HNFB, :jY!i; F?KMNXM.SYS RKMN8.J. BL DMMNSJ.SYS
TlMtlNFH,SYS DMMNXM.SYC; IIXMNSJ t SYS DXMNI:~E<. SYS UXMNXM.SYS
.UXMNSJ.HL D?‘MNSJ.SYS I:l’T’MNFR.SYC; D’THNSJ. HL DSMNSJ.SYS
DSMNFB.SYS DSMNXM. SYS DPMNSJ.SYS Df:‘MNFR,!jYS DF’MNXfl~SYS

@E-E) (CTR)

Volume directories can also be printed on a line printer if one is
available on your system. Check question 5 in the Hardware Con-
figuration section of Chapter 2 to determine if your system has a
line printer. Since listings print faster on a line printer than on the
console terminal, it is to your advantage to use the line printer for
large amounts of output. Tne /PRINTER option is used with the
DIRECTORY command to cause a directory to be printed on the
line printer instead of the terminal. Make sure your line printer is
turned on, and then type the DIRECTORY command as shown
(users who do not have a line printer can ignore this command):

Long and Short Command Format

+ x:1 :I: 17 Iii: i:: r’ I:) R Y / 1::’ Fi :I: N ‘T’ Ii: Ii (RET)

The entire listing may be quite long. When the line printer is done
printing, retrieve the listing.

Initializing a storage volume completely clears its directory. A new
(unused) volume should always be initialized before it is first used. In

4-16

Using the Monitor Command Language

addition, any storage volume that contains files that are no longer
needed can be initialized to recover the storage space. Note, however,
that the effect of an initialize operation is to remove all file names
from the directory. So before you initialize any volume, be sure that
there are no files on it that you might later want.

Since you will use your storage volume to store several new files
(created as a result of the various exercises in this manual), clear its
directory using the monitor INITIALIZE command. This ensures
that there is room on the volume for new files.

Long Command Format

, :I: N :I: ‘I- :I: n I.- I z EZ (RET)
I:I c;f v :i c E? ‘f U i:l I... : (RET) (VOL: is the assigned logical device

name for your storage volume.)

Short Command Format

+ 1: N I: ‘I’ I n I___ :I: 2, Ei: u i:) 1.. : (RET)
u Cl I... : / :I: l-l Ii. t 3 r e !:I Cl I..1 tii i..l r‘ e ‘i’Y (RET)

The system prompt physical-device-name/Init are you sure? is always
printed to provide an opportunity for you to verify the command.
Typing a Y initiates the operation, while N aborts (ignores) the oper-
ation and returns control to monitor command mode. Check your
command line, make sure you are initializing your storage volume,
and then type a Y. Again list the directory of the storage volume. It
should be empty.

Long and Short Command Formats

. D :I: 1;: 1:: c: ‘I’ C! Fi y L’ (:I I... : (RET)
:I. 3 “- ..I I..1 I-I -.’ 7 7

The number of blocks available for use on the volume is printed at
the end of the directory and varies depending on the type of device
you use as your storage volume.

/ INITIALIZE /

The commands you have performed in this chapter have prepared the
system for major operations that will follow. In Chapter 5 you begin
by using the RT-11 editor to create text files that you will store on
your initialized storage volume.

4-17

Using the Monitor Command Language

SUMMARY:
INITIAL MONITOR
COMMANDS

ASSIGN physical-device-name logical-device-name
Assign a logical device name to a physical device name.

DATE
Print the current date, if previously set.

DATE dd-mmm-yy
Set the current date (day-month-year).

DIRECTORY dn:
List the volume directory on the terminal (dn: is the code for
the device name; the default storage volume (DK:) is assumed if
dn: is not specified).

DEASSIGN
Remove logical device assignments.

DIRECTORY/BRIEF dn:
List a brief volume directory on the terminal, showing only file
names.

DIRECTORY/PRINTER dn:
List the volume directory on the line printer.

DIRECTORY/PRINTER/BRIEF dn:
List a brief volume directory on the line printer.

INITIALIZE dn:
Clear the directory of the indicated volume (dn: is the code for
the device name and must be specified).

GT OFF
Disable the VT 11 display hardware.

GT ON
Enable the VT1 1 display hardware so that the graphics screen
replaces the terminal printer/screen as the terminal output
device.

SHOW DEVICES
Print the status of all current logical device name assignments.

TIME
Print the current time, if previously set.

4-18

Using the Monitor Command Language

TIME hh:mm:ss
Set the current time-of-day (hour:minute:second).

CTRL/C CTRL/C
Interrupt the current operation or program and return control
to monitor command mode.

CTRL/E
Direct terminal output to both the graphics screen and the ter-
minal printer simultaneously. Type a second CTRL/E to return
output control to only the graphics screen. (Valid only when
VT 11 display hardware is enabled.)

CTRL/O
Inhibit the remainder of output from printing on the terminal.

CTRL/U
Cancel every character in the current line.

DELETE
Cancel the last character typed on the current line.

LPll/LSll Line Printer Manual (EK-LPI l-TM-005). Maynard, Mass.: Digital
Equipment Corporation, 1975.

A hardware manual for the owners and operators of LPI l/LSl 1 line
printers and for those who will be programming computers to interact
with this device.

RT-11 Pocket Guide (DEC-1 l-ORRCB-A-D). Maynard, Mass.: Digital Equip-
ment Corporation, 1977.

A summary of all RT-11 monitor commands and command options, and
system utility program operating commands.

RT-11 System User’s Guide (DEC-1 I-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

SUMMARY:
SPECIAL

CONTROL
COMMANDS

REFERENCES

A guide to the use of the RT-11 operating system. See Chapters 3 and 4.

4-19

CHAPTER 5
CREATING AND EDITING TEXT FILES

The ability to create and edit text files is one of the most useful
features of the RT-11 operating system. Not only can you create
computer programs, data files, memos, and reports on-line (i.e.,
under the control of the system), but you can alter them by adding
or removing text without retyping the entire file.

You create and edit text files more often than you perform any
other system operation. Therefore it is essential that you become
familiar with the editing process as quickly as possible. Editing
should become second nature to you as you learn to use the RT-11
computer system.

The RT-11 editor is a system utility program called EDIT.SAV, THE RT-11 EDITOR
which is stored as part of the RT-11 operating system on your sys-
tem volume. Text files that you create with the editor are stored in
the computer in ASCII format. ASCII, which stands for the Ameri-
can Standard Code for Information Interchange, is an industry-
standard code that consists of a numeric representation for each of
the alphabetic characters (A to Z), the numeric characters (0 to 9),
the punctuation characters, and some special communication control
characters. When you type text on the terminal keyboard, the
system automatically converts the text to the appropriate ASCII
codes; when you request listings on the terminal or line printer,
the system converts the ASCII code back to the appropriate text
characters.

The RT-11 editor uses a specially reserved area of computer memory
to hold the text you are creating or editing. This area of memory is
called the text buffer. When you create text, the characters that you
type on the terminal keyboard are transmitted directly into the text
buffer. When you edit already existing text, the characters are copied
from the input file into the text buffer. Once in the text buffer, the
characters are available for modification. When you have edited the
text in the buffer to your satisfaction, the characters are moved out
of the text buffer to the output file (Figure 5-l).

5-l

Creating and Editing Text Files

COMPUTER

CREATING A
TEXT FILE

EDIT/CREATE

INPUT

OUTPUT

FILE w
Figure 5-l Editing with RT-11

Since the text buffer is a finite area of computer memory, you may
at times try to input more text than the buffer can accommodate. If
this condition becomes apparent to the editor, it prints a warning
message on the terminal telling you that before you can input any
more text, you must make room in the buffer, either by transferring
text to the output file or by erasing text already in the buffer.

You can avoid this inconvenience during editing if you make use of a
concept called paging. When you create a large text file, instead of
typing the file as one long stream of text, divide it into individual
pages of approximately 50-60 lines in length; this corresponds
roughly to the size of a line printer of terminal listing page. You can
then copy the text into and out of the buffer one page at a time. A
single page of text is never too large for the text buffer and also fits
nicely on the line printer or terminal perforated paper when you
obtain a listing.

You activate the editing capability by using the monitor EDIT com-
mand. When creating a file, you must use the /CREATE option
followed by the file name and file type you want assigned to the new
file. The default storage volume (DK:) serves as the default device,
so unless you specify a device using one of the codes in Table 4-2,
the editor creates the new file on the device DK: (which is the sys-
tem volume, unless changed via ASSIGN).

First, if you are using display hardware, disable it with the monitor
GT OFF command; the editor has a special display capability that is
not described until later in the chapter:

5-2

Creating and Editing Text Files

Long and Short Command Format

Next, use the editor to create a short text file of only five lines. Call
the file DECIND.USA and use the default storage volume (currently
the same as the system volume) for the file.

Long and Short Command Format

Once the output file is open (that is, when the appropriate file has
been established for output operations), the editor prints a prompt-
ing asterisk at the left margin. The asterisk indicates that control is
in editing command mode and is your cue to enter an editing
command.

The editing command used to create text is the I (Insert) command.
Type : El INSERT

All subsequent characters that you type on the terminal keyboard
will now be entered into the text buffer just as you type them. Enter
the following text exactly as shown, including all spaces and errors.

/

Before you type the RETURN key, check the line to make sure that
it matches what is shown here. Remember, if you make a typing
mistake that is not intentional, you can use the DELETE key on the
terminal keyboard to erase individual characters and the CTRL/U
command to erase all characters on the current line. When you finish
typing the five lines, type the ESCAPE (ALTMODE) key twice. The
ESCAPE key echoes on the terminal as a $ and is used to execute an
editing command and to return control to editing command mode.

3 I: W Iii: Id 0 I.., X:1 ‘I’ I-I E: !ii Ei: ‘T’ l? 1.1 ‘T’ !:; ‘I‘ (:I E Ii:: E !ii iii: I... F: -.. E: U :I: I:! E: N 7’ Y (RET)
‘1. I-I I? 7’ A I.. 1.. M Iii: N A Ii I.!: I:: I? E:: A ‘I’ Ei: I:1 Ei: (:J 1.1 A 1.. Y I’ ti A ‘I’ ‘T‘ Cd Ei: Y (RET)
l-l A 6’ Iii: !.I i-4 I:i’liI: I... :[A E I... Ei: ‘T’lii: N I:1 Ei: N C: 1: E: 8 I:1 F:’ W l-l :I: f:: tl T tl Ei: Y (RET)
A I? I_: iV X:1 Cl W 1.i: D B Y ‘T’ I-I fi: :I: R I:: I? fi: A ‘1’ I:) l? v ‘T’ I-I A ‘I’ A M C) N I:; (RET)
‘I’ I-l Ii.. 8 Ii:: A li Iii: I... :I: I::’ Ei: Y I... :1: k5 Ei: I? ‘T’ Y A N D I-I r? F:’ 1.. Ef: N Ei: S !.; o m
(ESC)m
*

5-3

Creating and Editing Text Files

I EXIT

EDITING A TEXT
FILE

I 1

I EDIT I
I 1

1 READ

Forget for the moment that this text contains several misspellings
and other errors, and assume instead that you are satisfied with it
and ready to transfer it from the text buffer to the output file. The
EX (Exit) editing command performs this function. This command
terminates editing, transfers all text currently in the text buffer to
the output file, closes the currently open output file (making it
unavailable for further output operations), and returns control to
monitor command mode, indicated by a dot at the left margin. Use
the EX command to close the file DECIND.USA:

You now have a file on your system volume called DECIND.USA,
consisting of the five lines of text you just created.

The file DECIND.USA needs editing. To edit an existing file, you
again use the EDIT command to activate the editor. Next indicate in
the command line the two-character device code for the volume on
which the file resides (the default storage volume, DK:, is assumed).
Following this, you indicate the file name and file type of the file.
The editor then opens the file, making it available for input
operations.

Thus, to open the file DECIND.USA for editing, type:

c I!:: 1:i :I: ‘I .I:1 EL c :I: N x:1 + l.J!; n (RET)
.*

The EDIT command opens the input (and output) files. Use the R
(Read) editing command to read the first page of text from the input
file into the text buffer. No output occurs to the output file, but the
file is available for output at a later time. The input file itself is not
altered in any way.

Whenever text is read into the text buffer, a pointer is automatically
positioned at the beginning of the text. This pointer is an invisible
indicator that serves as a target for editing commands. The pointer
pinpoints the exact location in the file where the next character will
be inserted. For example, when you finished inserting text earlier
(just prior to using the EX command), the pointer was positioned at

5-4

Creating and Editing Text Files

the end of the file. Now that the EDIT command has been used to
read text into the text buffer, the pointer is positioned at the
beginning of the text in the text buffer. If the pointer is not at the
beginning and you want to move it there, you can use the B
(Beginning) command; this command moves the pointer to the
beginning of the text in the text buffer, no matter where the pointer
is currently positioned:

With the pointer positioned at the beginning of the text buffer, you
can use the L (List) editing command to list the text currently in the
text buffer on your terminal printer. The List command lists text,
starting at the pointer and continuing to whatever place you indicate
by the command argument.

A command argument is simply a prefix to an editing command that
sets limits on the command’s actions. Command arguments are used
frequently and are summarized in Table 5-l. Study this table for a
moment before continuing.

Table 5-l Command Arguments

Argument

n

Meaning

n represents any integer in the range - 163 83 to
+16383; n may be preceded by a + or -. If no
sign precedes n, it is assumed to be positive.
Whenever an argument is acceptable in a
command, its absence implies an argument of 1
(or - 1 if only the - is present).

0 0 refers to the beginning of the current line.

I / refers to the end of text currently in the text
buffer.

El LIST

Thus, with the pointer positioned at the beginning of the text, use
the / argument and the L command to list on the terminal all text in
the buffer. The position of the pointer does not change. List the text
and compare your output with the five lines shown on the following
page; they should match exactly:

5-5

Creating and Editing Text Files

* / I... 0 a
W Ei: h C) I... 11 T I-I Ei: !3 li_ T R 1.1 T !j T Cl B I_ I_ $; I:: I... I::’ I:: U :I: D I: N T P
T HAT AI... I... MI:: N A I? Iii: C: l?lii: A ‘r Ii: D f: CJ 1.1 A I... I ‘r I-l A T T I-l I_ y
l-l 67 u Iii: II N R E I... :I: n E I... It: T Ii:. N x:1 K N c :I: Iii:?! Cl F’ w ti :I: c: I-l T H E Y
n 14 I: iv D CI w E: X:I B Y T 14 I:: :I: ~:i: C: ~:ir iii: n T (3 I’;: y T l-l 63 T n M 0 N G
‘r ti I:: s ii: A I:(E;: I... :I: 1:~ 1::: y I... :I: u I_: 13 T Y n b4 n l-l 63 P l... 1: f4 1: s s +
1

If your output and the five lines above do not match exactly, then
you probably typed some unintentional errors into DECIND.USA.

Unfortunately, the remaining EDIT commands in this exercise
depend upon an exact reproduction of DECIND.USA to function
properly. Therefore, since you are not yet familiar with the EDIT
commands necessary to correct your file, an existing copy of
DECIND.USA with intentional errors must be substituted.

Prepare the text buffer by erasing it with CTRL/C (ESC) 0. This
unusual command combination is required by the EDIT program to
exit without creating an output file. The structure of the command
prevents you from accidentally eliminating a file with a single
CTRL/C.

The monitor command mode period appears, signalling your de-
parture from the editing command mode. Your system volume still
contains the file DECIND.USA that you created earlier. However, it
also contains the copy provided with the system, DEMOED.TXT,
that you will use for the remainder of the exercise.

Before going any further, you must rename DEMOED.TXT to
DECIND.USA to avoid confusion. A RENAME operation, ex-
plained fully in the FILE COPYING OPERATIONS section of
Chapter 7, is the method of choice. Type RENAME DEMOED.TXT
DECIND.USA <RET).

The contents of DEMOED.TXT are now labelled DECIND.USA.
Type EDIT DECIND.USA (RET) to open the file for input and the R
command to read it into the text buffer.

, Iii: ICI 11: ‘I’ I:1 Iif: c :I: P-4 x:1 * 1.1 s A (RET)
$I I? (Esc) (ESC)

5-6

Creating and Editing Text Files

Since the pointer automatically returns to the text’s beginning with
an R command, you can type /L to list the entire file.

I< / I... (ESC) (ESC)
w E.: t.1 [I I... x:1 ‘r’ I-I Iii: 5; If: ‘r I? II ‘r s ‘r Cl B 1:: I_: 5 1:: I... I:’ “.’ 1:: V n: III:: N ‘T’ Y

‘I’ I-I A ‘I’ n I... I... M Iii: N A ii Iii: c: I? Iii: A ‘r’ iii: II 1:: a IJ Cl I... 9 ‘r’ I.4 n ‘T’ ‘T’ Ii 1:: Y
Id n !, Iii: [..I N I:t Iii: I... :I: A E I... 1:: ‘T If: N x:1 1.i: N c: :I: Iii: s CI 1::’ w H :I: i:: l-l ‘r H E Y
n 13 I;:: N :(:I (:I w 11:: :[I E Y ‘r i-i ii: :I: ii i:: ii 1:: ,c, ‘r cl ri 9 ‘r i-i A ‘r 61 vi cl N G
‘r 1-11;;: E; 1:: AK< 1;:: I.,, 11: I::’ k;: y I... :I: B I;:: ii ‘r Y n iv u 14 n 1’8 I... I;;: N I:: !ii s +
*

The text contains errors and misspellings necessary for this chapter’s
proper functioning. To correct the errors, reposition the pointer so
that it is near the text you wish to change. The J (Jump) command,
for instance, in conjunction with a command argument, moves the
pointer either backward or forward by the specified number of
characters, including spaces. Type the J command now, using an
argument of 18, to reposition the pointer ahead 18 places’ :

Although you cannot see it, the pointer has moved from the
beginning of the text buffer to the right of the 18th character. You
can verify this using the List command again. The List command
with no argument prints from the .pointer to the end of the current
line and thus exposes the location of the pointer:

The characters above should match the current line on your terminal,
showing the pointer positioned at the first error in the text where an
H is missing in the word TRUTS. Since the pointer is positioned
between the second T and the S, use the Insert command to insert an
H in the proper place:

% 1: I.1 (ESC) (ESC)
*

I JUMP

‘Anytime you use the Jump command to move the pointer forward (or
backward) by enough characters so that it moves to a new line, you must
account for two extra characters in the command argument. This is because the
editor treats the carriage return at the end of each line as two characters ~ a
return and a line feed.

5-7

Creating and ‘Editing Text Files

El VERIFY
Now use the V (Verify) command to verify the line. The V
command, which does not require arguments, prints the entire line
containing the pointer (the current line) on the terminal. It allows
you to verify that a correction was properly made. The pointer is not
moved as a result of the V command; its position remains just to the
right of the last inserted character (shown here by the arrow):

*(!!m@
w iii: I-l (:I I... II T El 8:. zi I!: ‘T FZ 1.1 ‘T’ l-l s ‘r Cl ks Iii: Ii.: s I_ I.” I-’ .^. 1:: u :I: x:1 1:: N ‘I’ I
t

So far you have entered and executed editing commands one at a
time. You can enter multiple commands by separating each indi-
vidual command with a single ESCAPE. Typing two ESCAPES then
executes all the commands in the entire command string in
consecutive order. For example, combine the J and L commands as
shown in the following command string:

7J moves the pointer seven positions to the right and L then lists
from the pointer to the end of the line so that you can see the
pointer’s new position.

A special CTRL command is available to erase multiple editing
commands. The CTRL/X command (hold the CTRL key down and
type the X key) causes the editor to ignore an entire command string
that might extend over several lines if the I command is involved.
The editor echoes with -X, issues a carriage return, and prints an
asterisk indicating that you are still in editing command mode and
can enter a new command. For example, type:

In addition to the CTRL/X command, you may still use the
DELETE key to erase individual characters in the command line one
at a time, and the CTRL/U command to erase all characters entered
on the current command line.

5-8

Creating and Editing Text Files

Since you used the CTRL/X to ignore this last command string, the
pointer is still positioned at the next error in the file - just before
the extra E in the word BEE. You can erase this extra character by
using the D (Delete) commandl. The D command removes one
character (or space) to the right of the pointer for every +l in its
argument and one character to the left for every - 1. Use the D
command to erase the extra E and then verify the line (+l is assumed
if no ar nt is used):

f 1) (ESC) t,j (ESC) (ESC)

w iii: I-I Cl I... x:1 ‘I’ I-l Iii: s Iii: ‘r’ I? 1.1 ‘r 14 3 I” II H Iii: $3 1:: I... 1:’ ...’ I< v :I: D 1:: N ‘I’ ?
Y

4
I

As you can see from the position of the pointer above (shown by the
arrow), the D command does not actually move the pointer, but
simply erases characters around the pointer. Since the extra E was
erased, the pointer is now positioned between the E and the space.

Just as the Jump command moves the pointer by characters, you can
use the A (Advance) command to move the pointer by entire lines.
Again you give the command an argument which indicates the
number of lines, either forward or backward. The pointer is
positioned at the beginning of the new line. Use the A command to
move the pointer forward two lines, and then list the current line:

* 2 (I) (ESC) 1.. (ESC) (ESC)

I-I cl 6’ iii: 1.1 N Ii Iii: I... :I: n E I... Iii: ‘i’ Iii: N x:1 iii: iv c: :I: 1:: :i i:1 I: w Id :c I:: I4 ‘I’ I-l If: Y

This entire line does not belong in the text. To erase it, you could
count the number of characters in the line and use this number as an
argument to the D command; however, there is an easier way. The K
(Kill) command erases the entire line following the pointer and
positions the pointer at the beginning of the next line in the text.
Type:

El DELETE

El KILL

‘The Delete command should not be confused with the DELETE key on the
terminal keyboard. While both perform the delete function, the D command is
used to erase characters already within a text file; the DELETE key is used to
erase freshly-typed characters in a command string or during text creation.

5-9

Creating and Editing Text Files

El GET

The pointer is now at the beginning of the next line in the text. As
you can see, this line also contains an error, the word AR is
incorrectly spelled. Use the J command to jump over two characters,
insert the E, and then verify the line:

The arrow shows where the pointer is now positioned. This line still
contains an error - it is missing some text; the words WITH
CERTAIN INALIENABLE RIGHTS should follow the word
CREATOR. You can count the number of characters from the
pointer to the second R in CREATOR and then jump the pointer by
this number, or you can use the G (Get) command. The G command
searches, from the pointer, for the first occurrence of a specified
character string and leaves the pointer at the end of that string. Use
the G command to search for the string OR (in CREATOR); then
insert the missing words and list the lines that have changed. Notice
how you use the carriage return to break the line into two parts (the
(sp) symbol is used to show where you should insert spaces):

* [j (1) 1::: (ESC) I: (sp) w :I: ‘r I-I (sp) [:; 1:;: 13 ‘r f?, :I: N (RET)
:I: f.4 &-, I... :I: Iii: t4 A I:! I... iii: (sp) I:(:I: i:; I-I ‘r B <ESC) A (ESC) 2 1.. (ESC) (ESC)
fi I:< 1:;: I..: N x:1 (:I IJJ Iif: x:1 I:{ y ‘r’ I-1 I_: I I:;: c: Ii Ii:: R ‘r (3 l:i’ w :I: ‘r’ II c: I_: li ‘I‘ n :c N
:I: N n I... :I: I::: N A B I... I::: ii :I: (3 I-I ‘T’ :i; y ‘r 14 n ‘r n M !:I b4 t:;
:I<:

To list both lines, it was necessary to move the pointer back to the
beginning of the first line you changed; this was done by the -A
command. The 2L command then listed both lines. Notice where the
pointer is; it was moved by the -A command and was not
repositioned by the L command.

You must be careful when you use the Get command. This command
searches for the first occurrence of the character string you specify.
This character string may be any number of characters but must be
unique if you want the pointer to move to the correct spot. For
example, if the characters OR had occurred anywhere after the
pointer and before the word CREATOR, the pointer would have
stopped there instead and you would have inserted text in the wrong
place.

The final errors in this text occur in the last line. The words THE
PURSUIT OF are missing, and the word HAPLENESS is a
misspelling. Use the Get command to move the pointer to the word

5-10

Creating and Editing Text Files

AND and insert the missing text. Move the pointer again with the
Get command to the “PLE” of HAPLENESS, erase the LE and insert
PI. Then verify the line.

Large text files of 50 lines or greater should be delimited into pages.
To do this, you insert a form feed into the text at the place where
you want the page to end. A form feed is typed as a CTRL/L (hold
the CTRL key down and type the L key). Typing a CTRL/L inserts a
form feed into the text, which the editor then recognizes as a page
break.

Since this text file is only five lines long, there is really no need to
delimit it as a page. However, for the sake of practice, insert a form
feed at the end of this file. Then move the pointer to the beginning
of the text buffer and list the entire text. Compare your text with
that shown below. If errors remain in your file, fix them using the
commands described so far.

i;(ESC) 1:(RET)
(CTRL/L) (CTRL/L echoes as eight line feeds.)

@Q Lc (ESC) / I... (ESC) @Q
WEi: lt.l(:)I...X:l ‘rI.iI:“;lii: ‘rRL.l’rI-I!:; ‘T’U RE: !i‘I_:l...I-‘.-,Ev1:I:II.:N’r,
‘I ~I~;1 RI...l.. Mlii:N AREi: c:r<lii:n’rlii:x:l lii:i.NJnl... P ‘I’Cif4‘T’ ‘rIiE:Y
AIM: I~~:NI:ICIWI~~:X:I BY -wt~::1:15 cxilii:~7m w:~ni c:iii:ii~rn~:~
:I: N A I... :I: I: N A f{ I.., I::: R :I: I:4 tu !i; y ‘rt4n.r ~~c)ia
.r 1.1 I;!: ii; E;: n pi k;: 1. :I,)::(Ijj: y i...:~:nlii:i:i~r~ ~X:I ‘wli:: iwxil:I:~r w twwI-~~w.ss +

t

This text is correct in spelling and content, but the last two lines
should be justified to make reading them easier. The pointer is
currently at the beginning of the text. Use the G command to search
for the character string AMONG; then insert and delete text to
justify the lines. Finally, list the text again:

El CTR L/L

*

5-l I

Creating and Editing Text Files

El NEXT
Once you are satisfied with your text, you are ready to transfer it to
the output file. You could use the EX command to transfer the text,
as you did earlier in the section Creating a Text File. However,
suppose your input file has additional pages of text that require
editing. If you use the EX command, all remaining text in the input
file will be read through the text buffer into the output file and the
files closed without giving you a chance to do more editing. To avoid
this, you can use the N (Next) command. This command transfers
the text currently in the text buffer to the output file, clears the text
buffer, and reads in the next page from the input file. The pointer is
positioned at the beginning of the text buffer.

‘f [i: 11 1 ‘r .“. I::’ Ei: r, (:j (3 f :i I-, p I,., .I; .p :i. 11. 62 (No text remains in the
8 input file.)

If you use the N command when no text remains in the input file (as
just happened), the editor prints a message on the terminal telling
you so. At this point, you can type the EX command to close the
file.

When you close a file after editing, the editor creates a file on the
default storage volume (or system volume). It gives this new file the
file name and file type that you indicated for input. It then renames
the input file so that the file retains its file name but is assigned a file
type of .BAK. .BAK identifies it as a backup file, here an original
input file retained in case of editing mistakes or accidental deletion
of the new file. Thus you now have two versions of the DECIND file
on your system volume: DECIND.USA, which is the edited version,
and DECIND.BAK, which is the unedited (original) input file. Verify
this using the monitor DIRECTORY command:

Long and Short Command Format

The * following DECIND. is a type of shorthand notation called
wildcard construction. Here it means to list all files named DECIND
regardless of their file type. Wildcard construction is explained in
greater detail in the Multiple File Operations section of Chapter 7.

Whenever you edit the same file a number of times, new versions
overwrite old versions. Thus only two versions of the edited file
(filnam.BAK and tilnam.typ) ever reside on a volume at one time.

5-12

Creating and Editing Text Files

Later model terminals(e.g., LA36 DECwriters and VT52 DECSCOPE
terminals) have the capability to print in upper- and lower-case.
Certain line printers also have this capability. You can use the
upper-/lower-case capability of these devices if you type the EL (Edit
Lower) editing command before entering the text you want to insert
in lower-case. The EL command instructs the system to accept all
characters typed as they appear on the keyboard. The monitor
facility which converts all alphabetic characters to upper case is dis-
abled. In addition, the characters are echoed on the terminal printer
or screen as upper- and lower-case characters.

USING UPPER-
AND

LOWER-CASE
CHARACTERS

Open the file DECIND.USA again and type the EL command:

Long and Short Command Format

+f:I:lIl:‘T’ X:tti:C:I:ND + IJSAm
tf: I... (ESC) (ESC)
b

Once you have typed the EL command, you can use the SHIFT key
on the terminal to designate upper-case, just as you do on a
typewriter. Editing commands may be entered as either upper- or
lower-case characters. For example, type the following commands,
which change the characters in the first line of the file DECIND.USA
to upper- and lower-case:

The upper- and lower-case capability is useful for reports, memos and
other textual material that you list on upper-/lower-case devices.
However, all characters are printed as upper-case if you list the file
on a line printer or terminal that does not have the upper-/lower-case
capability.

If at any time you want to revert to strictly upper-case editing, type
the EU (Edit Upper) command:

El Edit Upper

te I..1 (ESC) (ESC)
*

5-13

Creating and Editing Text Files

SUMMARY:
EDITING
COMMANDS

Upper-case editing is a default mode. Whenever you open a file for
editing or create a new file, you must enter the EL command if you
want to use the upper-/lower-case capability.

Close the file DECIND.USA by typing:

EDIT filespec
Activate the editor and open the file for editing.

EDIT/CREATE filespec
Activate the editor and create a new file.

Control Commands

CTRL/L
Insert a form feed. The form feed character is used to delimit
pages of text in a file (introduced as part of text by the Insert
command).

CTRL/X
Ignore all commands in the current editing command string.

Command Arguments

n(+ or -)
n is an integer value between -16383 and +16383 which sets
the range of a command’s actions based on the pointer’s current
position.

0
Beginning of the current line (the line containing the pointer).

I
End of the text in the text buffer.

Input/Output Commands (pointer is not repositioned)
(x indicates that an argument may be used)

EX
Exit; terminate editing, transfer the contents of the text buffer
and the remainder of input file to the output file; close input
and output files; return to monitor command mode.

5-14

Creating and Editing Text Files

XL
List; list, from the pointer, x lines of text.

xN
Next; write the contents of the text buffer to the output file,
clear the text buffer, and read into it the next page from the
input file; perform this write/read sequence x times.

V
Verify; list the current line (the line containing the pointer) on
the terminal.

Pointer Location Commands (pointer is repositioned)
(x indicates that an argument may be used)

xA
Advance; move the pointer to the beginning of the xth line
from the current pointer position.

B
Beginning; move the pointer to the beginning of the text buffer.

XJ
Jump; move the pointer forward or backward by x characters.

Text Modification Commands (pointer is repositioned)
(x indicates that an argument may be used)

xD
Delete; erase x characters to the right (or left) of the pointer.

I text 0
Insert; insert text into the text buffer at the present pointer
position.

xK
Kill; erase x lines of text, beginning at the pointer.

Search Command (pointer is repositioned)
(x indicates that an argument may be used)

xG text
Get; search the text buffer, beginning at the pointer, for the x
occurrence of the indicated text string and leave the pointer at
the end of the text string.

5-15

Creating and Editing Text Files

Upper-/Lower-Case Commands (pointer is not affected)

USING A
GRAPHICS
DISPLAY
TERMINAL
DURING EDITING

Normal Use of the
Graphics Display

EL
Edit Lower; accept characters typed at the keyboard as upper-/
lower-case.

EU
Edit Upper; revert back to upper-case editing (after EL).

If your system configuration includes VT1 1 display hardware, there
are several advantages to your using it during editingl. First, the
graphics screen becomes a window into the text buffer, exposing
twenty lines of text at a time (the current line, the ten lines
preceding it and the nine lines following it). Figure 5-2 illustrates this
format. As you edit, the lines in view shift to conform to the current
line. In addition, the pointer is visible and appears as a blinking
cursor. Its position is automatically adjusted as you execute editing
commands. Finally, four lines at the bottom of the screen display the
last three command lines plus the current command line. Horizontal
dashes separate the text of the file from your commands.

Figure 5-2 Text Window Format

All editing commands and functions described so far can be used
when the graphics screen is enabled. The only difference is that
terminal I/O is rearranged on the screen as shown in Figure 5-2. Note
that the L and V editing commands become superfluous since the

1 If your system does not have VT1 1 display hardware, skip to the nex
Creating the Demonstration Programs.

section,

5-16

Immediate Mode

Creating and Editing Text Files

pointer is always displayed on the screen. Also, since twenty lines of
text are always displayed, any List command within that range is
unnecessary.

Currently, your graphics screen is not enabled. To enable it, use the
monitor GT ON command as you did in Chapter 4:

Long and Short Command Format

. I; ‘T’ !:I N (RET)

Now when you use the EDIT command to activate the editor, the
graphics screen will be rearranged as shown in Figure 5-2. You can
use the CTRL/E command, described in Chapter 4, to request
simultaneous I/O on the terminal printer and graphics screen.

In addition to the regular editing capability, a quick and easy method
of graphics editing, called immediate mode, is available. Immediate
mode uses a simplified set of editing commands that are limited to
pointer relocation and character deletion and insertion. Most of these
commands are similar to the special CTRL commands because to
type them you use the CTRL key in combination with another
character key. However, the use of these particular control com-
mands is meaningful only in the editor immediate mode. Table 5-2
lists the commands.

Table 5-2 Immediate Mode Commands

Command Meaning

CTRL/N Advance the cursor to beginning of next line
(equivalent to A)

CTRL/G Move the cursor to the beginning of the previ-
ous line (equivalent to -A)

CTRL/D Move the cursor forward by one character
(equivalent to J)

CTRL/V Move the cursor back by one character (equiva-
lent to -J)

DELETE

ESCAPE

double
ESCAPE

Delete the character immediately preceding
the cursor (equivalent to -D)

Return control to the editing command mode

summon immediate mode

5-17

Creating and Editing Text Files

Use the editor to open a new file called IMMODE.TXT:

Long and Short Command Format

Now activate immediate mode. You do this by typing the ESCAPE
key twice in response to the editing command mode asterisk. Since
there are no other commands in the command line, the editor
recognizes the double ESCAPE as an immediate mode command.

The editor responds by printing an exclamation mark in the com-
mand portion of the screen; the exclamation mark signifies that you
are using immediate mode.

Character insertion is the default operation and occurs whenever you
type a character other than one of the immediate mode commands
listed in Table 5-2.

El CTRL/G

The next several paragraphs demonstrate the use of the immediate
mode commands on a selected portion of text. Remember that all
characters that you type that are not immediate mode commands
are treated as input. Commands do not ‘echo on the graphics screen
so all you ever see is the current text file. Type the following:

TO BE, OR NOT TO BE-THAT IS THE QUESTION: (RET)
WHETHER ‘TIS NOBLER IN THE MIND AND HEART TO SUFFER (RET)
THE SLINGS OF OUTRAGEOUS FORTUNE (RET)
OR TO TAKE ARMS AGAINST A SEA OF TROUBLES, (RET)
AND BY OPPOSING END THEM? (RET)

As you can see on the graphics screen, the cursor (pointer) is posi-
tioned at the beginning of a new line. CTRL/G, equivalent to -A
in standard editing, moves the cursor to the beginning of the previous
line; the cursor is repositioned immediately. Type:

(CTRL/G)
(cTRL/G)
(CTRL/G)

5-18

Creating and Editing Text Files

The cursor has moved backward three lines, one line for each
CTRL/G command and is positioned before the line:

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/V, equivalent to -J, moves the cursor back by one character.
Move the cursor back over the carriage return and line feed at the
end of the previous line by typing the CTRL/V command eleven
times (remember, the carriage return and line feed count as two
characters) :

(CTR) (eleven (11) times)

WHETHER ‘TIS NOBLER IN THE MIND AND HEART TO SUFFER

This positions the cursor before the word TO. DELETE, equivalent
to -D, deletes the character immediately preceding the cursor. Type
the DELETE key ten times:

(ten (10) times)

WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER

CTRL/N, equivalent to A, advances the cursor to the beginning of
the next line:

(Cm)

THE SLINGS OF OUTRAGEOUS FORTUNE,

CTRL/D, equivalent to J, moves the cursor forward by one charac-
ter; type CTRL/D ten times:

(Cs) (ten (10) times)

THE SLINGS OF OUTRAGEOUS FORTUNE,

Next type this text (it will be inserted immediately to the left of
the cursor) :

El CTRL/V

I DELETE

El CTRL/N

I CTRL/D

(sp) AND (sp) ARROWS

5-19

Creating and Editing Text Files

The text on the screen should now look as follows:

I ESCAPE

CTRL/C ESCAPE
ESCAPE

TO BE OR NOT TO BE-THAT IS THE QUESTION;
WHETHER ‘TIS NOBLER IN THE MIND TO SUFFER
THE SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE,
OR TAKE ARMS AGAINST A SEA OF TROUBLES,
AND BY OPPOSING END THEM?

Check your results and correct any other mistakes you may notice.

To return to the standard editing command mode, type a single
ESCAPE.

(ESC)
*

This ESCAPE command does not echo on the screen. You should
notice that the exclamation point immediately disappears and the
text window format returns; an asterisk appears immediately below
the exclamation point on the screen.

You use immediate mode only to create and edit text. Operations
that move text in and ‘out of the text buffer must be done with
standard editing commands.

You do not need to save the text you have just created, so use the
CTRL/C command and two ESCAPES to return control directly to
monitor command mode. As mentioned before, EDIT requires
this unusual command combination to prevent an accidental
CTRL/C from killing your text.

CREATING THE
DEMONSTRATION
PROGRAMS

Following are two demonstration programs. One is written in the
FORTRAN IV programming language and one is written in the
MACRO-l 1 assembly language. Both programs are used in later chap-
ters of this manual and both contain intentional misspellings and
errors.

5-20

Creating and Editing Text Files

Use the editor to create these programs. Type them exactly as they
are shown, including errors. Use tabs and spaces to format each line
as shown (remember that tab stops are positioned every eight spaces
across the terminal page). Use any of the editing commands
described in this chapter. Activate the display editor and immediate
mode if you wish.

When you are done, check each file carefully. The two files should
match those shown here exactly, including tabs and spaces. Correct
any errors that you find that are not intentional. Obtain a listing of
each file using B O/L (ESC) 0 before closing the file.

Create the FORTRAN file first. Call it GRAPH.FOR and use the
system volume for storage. Then create the MACRO program. Call it
SUM.MAC and again use the system volume for storage.

NOTE

Knowledge of the FORTRAN IV and MACRO-11
languages is not necessary to create these demonstration
programs.

GRAPH * FOR VERSION 1
‘THIS PROGRAM F’ROIIUCES A Pl...OT ON THE TERMINAL.
OF AN ExTwNAL. wJNcT:[oN , FUN (x, Y)
THE t...It+Ixi OF .niE lv...oT f.wE DETERMINEII BY ‘THE DATA STATEMENTS
9 STAB g IS FILLED WITH A TABLE OF WEIGHT FLAGS
‘STRING’ IS USED TO B1JIL.D A LINE OF GRAF’H FOR PRINTING

SCAL(ZMINrZMRXrMAXZrIO=ZMINtFLOATo(-1.)S(ZMAX-ZMIN)/FLOAT(MAXZ-1)
LOGICAL~l STl?ING(l.J,J) rSTAR(lO0)
DATA XMIN 7 XMAX y MRXX/-5 r 5 7 45/
DA’rA YMINyYMAX,MRXY/--S,S,72/
ISATA FMIN Y I”MAX/O t 0 I :I. . O/
cfu, scoi-‘Y (fl- :I. 2 3 4 5 b 7 8 9 ,t’ ,STnH)
MAXF’L.EN (STAB)
DO 20 1X=1. ,MAXX

X=SC:AL(XMIN,XMAXrMAXXr IX)
CALL REPEAT (’ k ’ 9 STRING 9 MAXY)
IF (I x . E a . I. .OR. IX.E:O.MAXX) GOT0 20

DO 1.0 :IY=2,MAXY-I

10
30

Y:=SCAI...(YMINrYMRXrMAXYrIY)
:[I-UN--2~t:[N’r(I-l.OA’T(MAXF.-.:~)$(F‘UN(X,Y)~-FMIN)/(FMAX-FMIN) 1
STRING(IY)=STAB(MINO(MAXI-rMAXO(lrIFUN)))

CALL. I”IJTSTKING(7 Y STRING y ’ ’)
CALL IEXI’I
END

F‘IJNCTICIN FUN (XI Y)
r<:+joR’r (x**2+.y**p)
FUN:~X*Y*(RYEXP (.-I?) 1 *$2
RETURN
ENI1

5-2 1

Creating and Editing Text Files

REFERENCES

.TITLE SUMIMRC VERSION 1

.MC:ALL .TTYOUT, .l.:XIT, .F'KINT

N :::: 7 () , ;NO. 01: DIGITS ix-' 'I::' 'To i:At.cuLATF:

i I 1;. , :: 'rl-11: SUM cll- ‘THE RECII"RiJCALS oi- 'THE I-ACTORIALS
i l/O! .t l/1.! .t :1./L?! + 1./Z! .t. 1/4! ,t l./!"j! ,t. . . .

E: x F’ : , ,::I F; ‘1. ,,, ‘,

MOV'
1:: 1: F; c; .r : MClV

MOV
S Ii: i:: 0 NISI : A S 1..

MOV
ASL
ASI...
n x:1 x:1
11 I!!: i.:
HNE
MOV

'rti%l?I:I: MOV
MOV

FwuFm: INc
SiJR
HCC
ADD
MOV

AD II

N+:I
:I.

;PRINT i:N.rFIClI:lIlc'rCll~Y 'rEx7
; NO, OF:' C:HAIIS OF 'E' 'I'[) I"'RIN'1
;NO. CIF DIGITS IJF' AcCllR~i~Y
;ADDWESS OF DJ:GI:T vmTm
iD0 MiJLTI:I::'LY HY 10 (DEcIMAI...)
i s A viii: * 2
;*4
i*s
;NOW *lOr wIwr 'rcl NEXT DIGIT
;AT ENII OF' rrIGi:Tw'
;RRANcH II“ NO'1
iG0 'THRU ALL PLRCESY 1l:CVIDI:NG
iHY 'IliE PLAcES INDEX
i:I:NIT i~uoTI~NT Fw~IsTm
; H U MI" CIU OT I: EL N 'I
; SllB’T Ii’GC: T IL i:lOF) I: SN ' '1' HAD
i NUMERATOR TS ALWAYS .::: lO$N
;F IX HE:MA:LNDER
i S&VI.: RE:MAl'NDE:R AS 1iAST.S
; ~CIR NEXT nl:c;l:'r
i GRIiATEST INTE:GER cAli'RIE-:S
; 'r [J G IV E 111: G I: 7
;AT END OF x)i:i;I:T ws:ToR-~
DBRANCH IF:' NO.1
i GI;:T D I G I: 'r 'ri:~ C~UTPU T
;F-IX 'THE: 2.7 To .7 So
ITHAT 1.r IS ONLY 1. DIGIT
; (IIE ALLY 11 :[U I: DE BY 10)
OMAKE D:[G:I:T ASc 1:I.
i ou 'r I::* u 'r 'r 1-I E;: D I: G :I: ‘I
iCl...EAli NEXT DIGIT LOcRT:I:ON
; M [J R E LI :I: G :I: ‘T C; ‘T’ [) F:’ I+ 1: N ‘1’ ?’

i BRANCH I:F' YES
i WE ARE: I:l(JNI_

;:~NI:T vl:cTm 'ru ALL ONES

f.,E:$;$;,t,[.; : l A S C % T , ‘r ,, E: v #ql.,, ,,J E (1) JT If: 1 $: , .::: 1 5 1::. .::: 1 ::’ :::. ,2 , , .::: 2 () () :::.

. 11: v 1: N

. IKNDEXF”

When you have created and checked these two programs, obtained
listings, and stored them as files on your system volume, go on to
Chapter 6, Comparing Text Files. Chapter 6 demonstrates a proof-
reading aid that helps you evaluate your editing ability.

RT-I1 System User’s Guide (DEC-1 l-ORGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 5.

5-22

CHAPTER 6
COMPARING TEXT FILES

The RT-11 operating system provides a proofreading aid, called a
source comparison, to help you quickly establish the differences be-
tween two ASCII text files. During a source comparison, the system
compares the two files, character for character, and prints on the
terminal (or line printer) any lines that contain differences.

Usually, you perform a source comparison against two files that you
expect to be the same or at least similar in content. For example, if
an individual has copied one of your files to make changes to it, you
can quickly scan the changes by performing a source comparison be-
tween the new version and your original. Another use of a source
comparison is to check edits that you’ve made to a file. By compar-
ing the backup file against the edited version, you can proofread the
changes since only the portions of text that are different are printed.

In this chapter, you will use source comparisons to find editing errors
that may exist in the demonstration programs (SUM.MAC and
GRAPH.FOR) that you created in Chapter 5. These demonstration
programs contain intentional misspellings and misplaced text which
you must correct before the programs can be used in later demon-
strations. On your system volume is a counterpart for each file.
These counterparts are provided as part of the RT-11 operating sys-
tem so that you can use them to perform a source comparison
against your own versions. The provided programs have essentially
been carried one step further in the editing process than your own;
they contain no editing errors. Therefore, when you compare them
against your versions, the list of differences that is printed will reflect
the typing errors that still exist in your versions - some of these
errors are intentional; others you may have inadvertently introduced
during editing. All must be corrected before you can use the
programs.

The monitor command used to compare two text files is the DIF-
FERENCES command. When you type this command on the ter-
minal, it activates the RT-11 utility program called SRCCOM.SAV,
which is part of the RT-11 operating system stored on the system
volume. The system prompts you for the input file names. Respond

PERFORMING
A COMPARISON

6-l

Comparing Text Files

to the input prompts with the names of the tiles you want to com-
pare; the default storage volume is the system volume. The output
will be sent to the terminal which is the default device for output.

The programs that you created in Chapter 5 are called SUM.MAC
and GRAPH.FOR. Their respective counterparts on the system
volume are called DEMOXl .MAC and DEMOF 1 .FOR. Use the DIF-
FERENCES command to compare the MACRO (.MAC) files first.
The /MATCH option indicates the number of lines that determine a
“match”, explained in a moment.’

Long Command Format

* 1) :I: I::’ I::’ 1;: I:;: 1;;: N (1; 1;;: !;I / M ,$.r (1: I-1 : 11, (RET)
1::’ 3. :I. e I. ‘i’ II Ii_: ti !:I X :I_ Y MA c: (RET)
I::’ :i. 1, E.? ‘7 5’ A.. !ti!,!M + i"lAi:: (RET)

Short Command Format

o I:I I: I::’ I::’ f.: FE Ei: N [:: Iii: 8 / M $1 ‘T’ t:: I-4 : I 11 Iii: M 0 X :I. + MAC Ei L! M + M R C: (RET)

The list of differences printed on your console terminal should be
similar to that shown below. It will show all the differences listed
here, plus any others that you may have introduced yourself during
editing.

Notice the format of the list. Individual sections are marked to help
you become acquainted with the format. A description follows the
list and you should refer to it as you study the list.

A I.)1 . I :I I ILlI:: Llli.MOX I. . MA1: (VE:l<SLUN I:WClVlDED)
A :‘!) :l + I .T II IT ‘YIM.M~C: .._ 4 ‘JE:liSION I.

c I) I. UNI.. SliCONLI ;HRRNCti 1 I-: NUT
D 1) MWJ :bNrRO ;CiO ‘Ttil31.1 AL.1. F’L.nI::E:S. LIIVI.DING

B ****
c :.!) :1 BNEI 3NK.I ;HRANC:H :IF’ NOT
D I!) MCIV .+N, 130 ;I:;0 ‘THFW RLL. F’L..ACE:S, DIVIDI:N(;

c l)l ArIo ~~lot’O.lio iMAKlf DIGIT ASCII
D .L f .IlYUN iCIU’II”(IT ‘THE IlICGI~l

B ****
c 2)l
D 2)’

l?LlIl :1:10t’OrliO ;MAKE: DI:l:;I’I clcic .I1
. WYON i uimwr ‘THE I:lIGI’I

c I.) 1 .II:ND jzxfL

B t$$*
c :’) :t . I! NOI’ XF
D **********

‘Users of display hardware may wish to enable both the graphics screen and the
terminal printer by first typing the CTRL/E command.

6-2

Comparing Text Files

The first line of each file is always printed for identification purposes
(see lines A in the example list). Usually differences that occur in
these two lines are intentional and reflect information that is unique
to each file, such as name and file type, version or edit number, and
perhaps date of creation.

The numbers that appear at the left margin of the list further iden-
tify the files. For example, 1)l indicates the first page of the first tile
(the file entered first in the command, in this case, DEMOXl .MAC);
2) 1 indicates the first page of the second file (SUM.MAC).

The lines of both files are compared character for character. Blank
lines are ignored, but all other characters, including tabs and spaces,
are compared. When two lines are found to be different, the system
prepares a difference section which it will subsequently print (see B).

The system prepares the difference section as follows. When it finds
two lines that are different, it notes the page number and records the
lines (see C). Next it searches for a match. A match is a certain num-
ber of lines in each file which are exactly the same. Since you speci-
fied a match of 1 in the /MATCH:n option (/MATCH: l), the system
in this case searches for a single line in each file which is exactly the
same. When the system finds a match, it records the last line of the
match for identification purposes (see D). Then it prints the differ-
ence section and repeats the process, preparing a subsequent differ-
ence section if more differences exist. Individual difference sections
are separated from one another by a long row of asterisks, while the
short rows of asterisks separate the lines of the first file from those
of the second.

A message is printed following the comparison. Files are different
is printed if differences exist; No differences encountered is printed
if the files are exactly the same.

Check the list printed on your terminal to find the errors the system
detected. Mark each error on the listing of SUM.MAC that you ob-
tained in Chapter 5.

1 I
DIFFERENCES/
MATCH:n

Now perform a source comparison between the FORTRAN files,
DEMOFl .FOR and GRAPH.FOR.

6-3

Comparing Text Files

Long Command Format

Short Command Format

1.) 1 C DEMOFI . FOR (VERS:ION F’l?OVIDED)
2) 1 c GR4F:‘I-l .FOR VEllS.TON 1.

1)l c “ST’AB’ IS I~:‘:I:L.LI..D WITH A ‘TABLE OF HEI:GHT FLAGS
1) c “STRING” :I8 USED ‘TO BUl:LO A LI:NE OF’ GRAF’H FOR PRINTING

2 j 1 c l STAB” IS IF%l...l...E!J WITH R ‘TABL.E: OF WEIGHT FLAGS
5; $$**** ;b”STI:2.1:NG” :IS USED ‘TO BlJTLn A LINE OF GRFIF’H FOR F’RINTING

1 1 :1 MAXF-=:l...EN (STAR)
1) DO 20 1X=:1. vMAXX

2) :1 MAXFLKN (STAB)
2) KIO 20 SX:=l. r MAXX

lj l 30 CfiL.1.. PUTSTR (7, STRING I ’ ’)
1) c A I_. 1.. E: x :I: .I

2) I. 30 CALL. PUTSTRING (7 r STRING I ’ ’)
2 1 CALL EX:I:T
*x*x******

Likewise, mark the errors on the listing of GRAPH.FOR that you
obtained in Chapter 5.

Now return to the section in Chapter 5 entitled “Editing a Text
File.” Review the editing commands described there and the sum-
mary at the end of the section. Use the appropriate commands to
correct the files SUM.MAC and GRAPH.FOR. When you finish edit-
ing, again perform source comparisons against DEMOXl .MAC and
DEMOFl.FOR. If you have edited the files correctly, this message
should print on your console terminal in each case:

This message indicates that no differences were found during the
comparison. Thus, your programs are ready for use in later demon-
strations and you know how to successfully create and edit programs.

If differences still exist in your files and you cannot seem to resolve
them by reediting, you may continue to the next chapter if you
wish. However, you need practice editing and it is to your advantage
to rework the examples in both Chapter 5 and this chapter.

6-4

Comparing Text Files

DIFFERENCES
List the differences between two ASCII text files.

DIFFERENCES/MATCH :n
Indicate the number of lines (n) to determine a match; the
default number is 3.

RT-I1 System User’s Guide (DEC-1 l-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 4 and 15.

SUMMARY:
COMPARISON

COMMAND

REFERENCES

6-5

CHAPTER 7
PERFORMING FILE MAINTENANCE OPERATIONS

The system volume, as it is initially supplied, contains only the files
of the RT-11 operating system - the monitor files, the system device
handlers, the system utility programs, and perhaps the language proc-
essors. Since the system volume serves as the default storage volume
for all system operations (unless DK: was assigned to another vol-
ume), you will discover that it acquires many additional files during
normal use. For example, files that you create with the editor are
written on the system volume; edited tiles automatically create
backup versions on the system volume; many utility programs create
output and listing files on the system volume as part of their normal
processing operations. By the time you finish an average session of
computer operations, several new file names are added to the direc-
tory of your system volume. Eventually your system volume may
become full and its directory cluttered with the names of tiles for
which you have no use. To avoid this you should perform regular
housekeeping, or tile maintenance, operations as you use the system.
You should update and transfer copies of your important files to
other storage volumes for safekeeping and later use, and you should
delete from your system and storage volume directories the names of
files for which you no longer have a need.

The RT-11 operating system provides a number of monitor com-
mands for this purpose. These commands activate the RT-11 utility
programs called PIP.SAV, DUP.SAV, and DIR.SAV (which are part
of the RT-11 operating system stored on your system volume) allow-
ing you to perform file transfer and tile erase operations. The com-
mands used in this chapter show one way to maintain your system
and storage volume. When you become more familiar with system
operations and learn some of the commands not described here, you
may prefer other methods.

Before you perform operations that might move or erase files on a
volume, first list a directory of the volume involved. The directory
tells you the full names of tiles, their sizes, and whether backup
copies exist. A directory of your system volume shows the additional
tiles that have been added to it through normal use.

FILE DIRECTORY
OPERATIONS

7-l

Performing File Maintenance Operations

First obtain a directory of your system volume (as you learned in
Chapter 4), using the appropriate command to list it on either the
terminal or the line printer. The directory is relatively long; let it list
to completion.

Long and Short Command Formats

(Line printer)

(Terminal)

, x:1 :I: I:i 1::: c; .I’ 1:) Fi’ y (RET)

At the end of the system volume directory you should see several
additional entries. These files are the result of the system operations
you have performed so far:

11 I..: I:: :ll N II * u !i; n 2 1. ;3 - J 1.1 N 7 7
1:El::IND . EAK 2 l3-~,JllN-~77
GRAF’I”I * FOR 2 13-,JUN-77
GI~AF’H . HAK 2 11. 3 .I. J UN 7 7

SUM + MRC 4 13--..llJN-~77
SliM l B A K 4 :t 3”“..JUN-77

Next list a brief directory of your storage volume. This directory
should be empty (void of any file names or file types) since you
initialized the’ directory in Chapter 4.

Long and Short Command Formats

(Line printer)

, x:1 :c I7 Iii: c ‘I’ [:I l? Y / EC l? I EC 1:’ / F’ R :I: N ‘T’ E: l? u C) 1.. : (RET)

(Terminal)

. x:1 :I: Ii Iii: I:: T !3 I:; Y / E K :1’ Ef: F v I:) I... : (RET)

These directories give you the information you need to erase and
copy files. For example, you know the additional files that are now
on your system volume and you know that since the directory of the
storage volume is empty, there is ample room on it for new files to
be copied.

7-2

Performing File Maintenance Operations

You often have occasion to perform the same utility operation on
several files. For example, you may copy from one volume to an-
other all files with the file type .MAC, or you may erase from a
volume all files with the name TEST. Rather than perform the re-
quired operation on the files one at a time, it is easier to use a short-
hand method provided by the RT-11 operating system called the
wildcard construction. This construction allows you to substitute an
asterisk (*) or percent sign (%) for a portion of the file name which
is variable among all the files you want used in the operation. For
example, specifying DECIND.” in a command causes the operation
to act on all files with the file name DECIND, regardless of their file
type\ *.BAK causes the system to act on files with the file type BAK,
regardless of their file name. Specifying TEST%.FOR causes the op-
eration to act on all files having a type of FOR, starting with the four
characters TEST, and having any fifth character (e.g., TESTA.FOR,
TEST 1 .FOR, etc.).

MULTIPLE FILE
OPERATlONS

A special use of the wildcard construction involves substitution
of an asterisk for both file name and file type. *.* implies that all
files, regardless of the file name or file type, are to be used in the
operation.

Exercises in this chapter and throughout. the remainder of the
manual demonstrate various uses of the wildcard construction. How-
ever, it is valid only for the file maintenance commands listed in
this chapter; the wildcard construction is not valid for any other
commands.

Storage volumes provide an area where you can store important files.
Since most files are originally created on the default system volume,
you must copy them from the system volume to the storage volume.
The following exercises show you how to make backup copies on
your storage volume of the two provided demonstration programs
(DEMOFl.FOR and DEMOXl .MAC), and how to copy to the
storage volume the two programs you created (GRAPH.FOR and
SUM.MAC).

The monitor command that copies files between volumes is the
COPY command. This command instructs the system to duplicate
the file that you indicate as input; it then gives the new file the name
and file type that you specify as output. The original version of the
file is unaffected; that is, the original version is not physically moved
to the new volume, but a copy of it is made there.

FILE COPYING
OPERATIONS

El COPY

7-3

Performing File Maintenance Operations

To copy GRAPH.FOR to your storage volume under the new name
GRAPH.TWO, type:

Long Command Format

* (::[:)I:‘y <RET)
1::’ !’ (1) ,y, ‘1 c; 1:;; h I::- I-1 ~ 1::’ [] 13 (RET) (System volume is assumed

for input.)
.I’ Cl ‘i’ v!:!l... : [jlqfipl-l + 7’WC) (RET)

Short Command Format

, (11 r) 1::’ y (j 1::: fi 1::’ I-1 + F: (:I 13 ‘J C) 1.. : 6 Ii n 1::’ i-l , ‘T’ w Cl (RET)

The system makes an exact copy of the file GRAPH.FOR on the
storage volume and gives the copy the name GRAPH.TWO. When the
operation is complete, the monitor prints a period at the left margin
and waits for you to enter the next command. This time, copy
SUM.MAC to the storage volume.

Long Command Format

* 1.: (:I 1::’ y (RET)
F:’ r Cl IYI ‘? S!JM + MAC (RET)
‘I’ Cl ‘i’ v Cl I... : s I.! M + M A c: (RET)

Short Command Format

The system copies the file SUM.MAC to your storage volume and
gives the copy the name SUM.MAC.

Now, copy the two provided demonstration programs,
DEMOFl .FOR and DEMOXl .MAC, to the storage volume.

Long Command Format

* [::[:)I::‘y (RET)
I” r 0 m ? D El M Cl F:’ Il. , F:’ Cl R (RET)
‘r 0 ? V!:) I... : I:I E: M (:I I::’ I. + F’ 1:) t? (RET)

, (1; i:j 1’:’ y (RET)

FT Y’ Cl IYI ‘i’ l:IE.:M!:lX:I. * MAC 63
‘TU ? V !:I l.. : II I:: M 0 X :l . MAC (RET)

7-4

Performing File Maintenance Operations

A directory of your storage volume should verify that it now con-
tains these four files:1

Long and Short Command Formats

,DIHECTORY VOL.: @)
13-Jun-77

GRAPH ,‘l’WU 2 IJ-Jut-l-77
SUM . MAC 3 1;3-Jun-77

4 Files? 11 H1ock.s
4751 Free block.5

1lEMOFl. FOR 2 13-Jun-77
DEHOXl. MAC 4 13-Jun-77

The directory you just listed shows that you copied the GRAPH
xdemonstration file to your storage volume under a new file type,
.TWO. Assume you did not intend to copy it using a new file type
and now wish that it were assigned its original file type, .FOR. Use
the monitor RENAME command to rename the file already on the
storage volume. *

FILE RENAMING
OPERATIONS

(RENAME/
1 1

Long Command Format

Short Command Format

, ~lii:NnMlii: UCII... : GRAPH + 7’WCl UC)I...: til?AF’ti. FOR (RET)

The RENAME command simply changes the file name and/or file
type of a file in the volume directory without altering or moving

If you are using magtape or cassette as your storage volume, read the section in
Appendix B entitled “Directory vs Nondirectory-Structured Volumes”.

LMagtape and cassette users cannot use the RENAME command and should
read Appendix B, “Alternate RENAME Operation for Magtape and Cassette
Users”.

7-5

Performing File Maintenance Operations

the file itself. When you perform a rename operation, the volume
indicated in the input and output portions of the command must be
the same; otherwise a system message is printed.

Rename the file copies DEMOXl .MAC and DEMOFl .FOR presently
on your storage volume to EXAMP.MAC and EXAMP.FOR respec-
tively. Also rename a file currently on your system volume only,
DEMOSP.MAC, to SPOOL.MAC for a later exercise.

+ I? Iii: N A M I:: U 0 I... : X:1 E: M (:I I:: :L + 1::’ 0 I? U i:) I... : E;: X AM 1::’ , F (:1 R (Ret

. K Iii: N A M Ei: ~1 E M I3 S I” * MA (: ~; 1”’ i:) !D I... d M R (: (RET)

Again list a directory of your storage volume to verify that the re-
naming operation occurred.

Long and Short Command Formats

. UIRECIOKY uc11..: (RET)
1,J.-Jt~r,..-77

(jR(.$pH . ,T”H 2 1 ;3 .-. J I_, I-, .- 7 7
SlJM t MAC 3 li3-Jun-77

4 Files7 11 !3lock.s
475 1 Free t.1 1 cx:l~.5

EXRMF’ . FOR 2 1 3 - J I, 1-1 .-. ‘7 7

EXRMF’ t MAC 4 li3-,lurt.-77

FILE DELETION
OPERATIONS

Once copies of your important files are stored on a storage volume,
you can delete (erase) from the system (or any other) volume those
files that you no longer need. The file deletion operation deletes the
entry from the volume directory. Thus the space that the file
occupies on the volume becomes available for reuse. Files that you
want to delete generally include .BAK files created during editing,
temporary files created by utility programs, or any other unnecessary
files.

Now that you have copies of your important files, you can delete
several file names from your system volume. For example, you can
delete all files with a .BAK file type created as a result of editing.
You can delete the file DECIND.USA, since this was created only for
editing practice. Finally, you can delete the files GRAPH.FOR and
SUM.MAC since copies of these are now on VOL:.

Do not delete EXAMP.FOR or EXAMP.MAC even though copies of
these are also on VOL:. You should consider these two files part of

7-6

Performing File Maintenance Operations

the RT-11 operating system, and therefore should not be erased from
the system volume. These copies can serve as additional backups for
the files on the storage volume.

The monitor DELETE command is used to delete file names from a
volume. The DELETE command defaults to requesting confirmation
from the user by printing each file name on the terminal before it
deletes it. This gives you the opportunity to confirm each file before
deletion. If you type a Y response, the system deletes the file name,
while an N response instructs the system to ignore that file name and
go on to the next. You can specify as many as six input files for dele-
tion. Notice how you use the wildcard construction in one of the
input files to delete all files with a .BAK file type.

Long Command Format

Short Command Format

+ I:I Ii: I... I!: ‘i’lii: D Iii: C: I: 9 I:I + i.) !ii A Y S , B A I< y 6 I:; A F:’ l-l + F:’ [:I FL’ Y !j I! M + M G C: (HET)
II I< : I:rE: i:: 1: N D + 11 S A ? Y (RET)

I:II< : I:lE:C I ND l X3AK? y ($g
Elli : GRAF:‘kl ,E{AK’? Y (RET)

*FAK’? Y (RET)

You sometimes need to obtain a listing of a file before you can de-
cide whether or not to delete it. In Chapter 5, you used the RT-11
editor to obtain listings of the files you created. You can also obtain
listings of files using monitor commands. One command lists a file on
the console terminal; another lists a file on the line printer.’ The
system volume is the assumed storage volume for the input file.

FILE LISTING
OPERATIONS

1If a line printer is available on your sysrem, you should always use it for list-
ings. Line printer listings are neater and print faster than terminal listings.

7-7

Performing File Maintenance Operations

SUMMARY: FILE
MAINTENANCE
COMMANDS

Type one of the following sets of commands to obtain listings of
EXAMP.MAC and EXAMP.FOR.

Long Command Format

(Line Printer) (Terminal)

I::‘,:: .,I ix) ‘I’

I: 1 l.es’?

(RET) t ‘r y ,::a ,.: (RET)

L’CIL.. : E:XAMF’ t MAC: (RET) 1: j, 1. p ci ‘? tJ (,) I_,, : Jji: X (.J M 1::’ , M A (1: @

1::’ I:(1,: N .y (RET)

I& l.es? U!:)l...: EI:XAMF:‘t F:‘I:II:i’ (RET)
, , ‘(I::’ ,j;: @

1:. :I. :I. e 5; ‘? u 0 1. : FL: x n VI F:’ t 1:: Cl 17 (RET)

Short Command Format

(Line Printer) (Terminal)

l I::’ I’;: : I : N ‘T’ ‘J (:) I , . . : E : X ,$ iv[I::’ , M ,!J (: : (RET; * ‘r“,) : : I , I :
‘~.‘(:)I... : E:XRMF:’ , M,+(:: (RET)

+ I,.’ Ii :I: N 1’ L’ El I. : F: X R MI::’ e F.’ C) k’ (RET) . 7’ Y IF’ E: ‘J !I I... : IF: X A i+l 1:’ + F:’ C1 R (RET)

These file maintenance operations are the kinds of operations that
you should perform periodically as you use the system. File mainte-
nance keeps your system and storage volumes up-to-date and pro-
vides maximum free space on volumes for new files.

COPY
Copy the specified file from one volume to another.

DELETE
Delete the specified file(s) from the volume’s directory. Con-
firmation required before deleting the file.

DIRECTORY
List the volume directory on the terminal.

DIRECTORY/PRINTER
List the volume directory on the line printer.

PRINT
List the contents of the specified file on the line printer.

RENAME
Give a new name to the specified file.

TYPE
List the contents of the specified file on the terminal.

7-8

Performing File Maintenance Operations

RT-II System User’s Guide (DEC-ll-ORGDA-A-D), Maynard, Mass.: Digital REFERENCES
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See chapter 4.

7-9

CHAPTER 8
CHOOSING A PROGRAMMING LANGUAGE

Programming languages and language processors are aids provided by
the operating system to help you develop programs of your own.
Whenever you plan to write a program, you must first decide on the
programming language that you will use, since most computer sys-
tems support several. After you have chosen the language, you must
design and code your program using appropriate language statements
and being careful to follow language formatting rules and restric-
tions. Finally, you must use the corresponding language processor,
which is stored on the system volume or on a volume of its own,
to convert your program statements into a format suitable for
execution.

Hundreds of programming languages have been developed for com-
puter systems. Some languages can be used only for specific applica-
tions or in conjunction with a particular computer system. Other
languages are general purpose; they are suitable for a variety of
problem-solving situations and, in addition, are easy to learn and
use. The languages demonstrated in this manual include two well-
known and widely-used high-level programming languages (BASIC
and FORTRAN IV) and one RT-1 1 system-specific machine-level
programming language (MACRO- 11).

HIGH-LEVEL VS
MACHINE-LEVEL

LANGUAGES

High-level languages, like BASIC and FORTRAN, are usually easy to
learn and use. You write programs using language statements that
need not deal with the specifics of the computer system. The
language processor (and perhaps other utility programs as well)
handle all conversions that are necessary for program execution.
Since a single high-level language statement may perform several
computer operations, and since you need not be concerned or
familiar with the structure of the computer and peripheral devices,
you can concentrate solely on solving the problem at hand. The
language processor takes care of translating the statements into the
appropriate computer information.

Thus, high-level languages are considered machine-independent
languages because language statements are such that any program
written in the language can usually be executed on an entirely

8-l

Choosing a Programming Language

different computer system (that supports the language) with no or
relatively few modifications.

On the other hand, machine-level languages, like the assembly
language MACRO-l 1, require that you do have knowledge of the
computer and peripheral devices and how they work together. You
write programs in formats that are closer to those required for execu-
tion. Since a single machine-level language statement usually per-
forms only one computer operation, you must account in your
program for each computer operation that will be required.

For this reason, machine-level languages are machine-dependent
languages. The program is coded in a format that is not usually
interchangeable among systems. Machine-level language programs can
be efficient because the knowledgeable programmer will choose the
fastest and most precise instructions for getting the job done.

Table 8- 1 lists a comparison of high-level vs. machine-level languages.

Table 8-l Language Comparisons

High-Level

Easy to learn and use; no ex-
perience required

Machine-Level

More difficult to learn and
use; familiarity with the com-
puter system required

Machine-independent Machine-dependent

Many hidden conversions Only direct translation is
necessary for program exe- necessary for program exe-
cution; more computer cution; less computer
memory is used memory is used

Slower execution time Faster execution time

Less efficient; the system More efficient; the program-
makes decisions concerning mer makes decisions concern-
computer operations ing computer operations

Easier to debug (find and fix Harder to debug (find and fix
errors) errors)

Easier to understand pro- Harder to understand pro-
grams; functions added with grams; functions added with
less difficulty greater difficulty

8-2

Choosing a Programming Language

In general, beginning programmers, students, commercial applica-
tions programmers, and the casual computer user tend to prefer
high-level languages because they are less difficult to learn and use
and produce fast results. System programmers, on the other hand,
may prefer machine-level languages. The programs they write (those
that make up an operating system, for example) must often be as
fast, efficient, and concise as possible.

The designers of a computer system generally select programming
languages that they feel will satisfy and suit the current (or perhaps
potential) system user environment. The RT-11 computer system is
designed for use in many environments: education, business,
laboratory, etc. Some of its applications include data acquisition and
analysis, record keeping, control systems, and learning through
computer simulation. RT-11 programmers and users include both
the very knowledgeable and the student/beginner.

To satisfy the varied requirements of these environments, RT-11
supports several programming languages:

High-Level Machine-Level

BASIC- 11
FORTRAN IV
DIBOL
APL
FOCAL-l 1

MACRO- 11

Whenever you choose one or more of these programming languages
for your own use, consider the following criteria:

0 What is your programming experience? What languages
do you already know?

0 How much time do you have to learn a new language?

0 For what applications will you use the language? How
important are program speed and efficiency?

0 Will you use your program on any other computer
systems?

m-1 1
PROGRAMMING

LANGUAGES

If you are already familiar with a language supported by the system,
you may prefer to continue using that language rather than spend

8-3

Choosing a Programming Language

time learning a new one. However, if you want to learn a language,
consider your application. High-level languages handle most program-
ming jobs. Unless you plan to write extremely detailed or time-
critical programs you should select a high-level language.

If you are a beginning programmer, you may prefer to start with a
language like BASIC or FOCAL. Both are conversational, interactive
languages. Language statements use simple, English-like words and
common mathematical ej<pressions. You can request immediate
answers to problems by using the immediate modes of the languages,
or you can create detailed programs by combining single language
statements into larger segments. FOCAL-l 1 is DIGITAL’s program-
ming language for solving numerical problems; BASIC-l 1 is a super-
set of the industry-standard BASIC developed at Dartmouth College.
Chapter 10 of this manual describes BASIC-l 1 in more detail.

If your application mainly requires the use of complicated mathe-
matical operations or mixed data types, you may prefer to select
the programming language APL. This language uses a concise and
powerful shorthand notation to perform arithmetic and logical
operations on vectors, matrices, and arrays.

RT-11 FORTRAN IV is a superset of the industry-standard
FORTRAN IV. This language has long been recognized for its use in
the scientific field; in addition, it is one of the most commonly sup-
ported languages across systems. You may decide to choose
FORTRAN IV because it is a more powerful language than either
FOCAL or BASIC or because you plan to use your programs on
more than one system. Chapter 9 of this manual describes
FORTRAN IV in more detail.

Finally, if you are an experienced user, you may select the machine-
level programming language MACRO- 11. This is a powerful language
that allows user programs to access and utilize every possible feature
available on the RT-11 computer system. The language requires a
considerable amount of computer experience and knowledge to be
used effectively, however. The MACRO-l 1 language is best for you if
you are a system programmer or an experienced high-level language
programmer. It is described in more detail in Chapter 11 of this
manual.

CHOOSING Three RT-11 programming languages are demonstrated in the next
A LANGUAGE several chapters of this manual; FORTRAN IV, BASIC-l 1, and
FOR THE MACRO-l 1. Consider your ability as a programmer. If you are a

DEMONSTRATION beginner, BASIC is probably the best language for you to start with:

8-4

Choosing a Programming Language

FORTRAN is also a good choice. However, you need not be profi-
cient in any of these programming languages to perform the exercises
provided in this manual.

Your particular RT-11 computer system may not provide all three
languages. First check question 6 in the Hardware Configuration
section of Chapter 2 to find out which languages are available on
your system.

Then select a language to continue the demonstration. If you choose
FORTRAN IV, continue to Chapter 9. If you choose BASIC-l 1, go
on to Chapter 10. If you choose MACRO-l 1, go to Chapter 11.

Katzan, Harry Jr., Information Technology, The Human Use of Computers.
New York: Mason & Lipscomb Publishers, Inc., Petrocelli Books, 1974.

A textbook covering basic computing concepts, programming languages,
and topics in computers and society. See Part II, Chapters 7, 8, and 9.

PDP-11 Computer Family - Software and Services. Maynard, Mass.: Digital
Equipment Corporation, 1977.

An overview of the available PDP-1 1 family products and services.

PDP-I1 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

REFERENCES

A general overview and introduction to available PDP-1 1 software, op-
erating systems, and language processors. See Section III, Chapters 1, 2,
and 5.

8-5

CHAPTER 9

RUNNING A FORTRAN IV PROGRAM

The FORTRAN IV programming language’ is a machine-
independent programming language that was originally designed as a
quick and easy aid for solving mathematical equations and formulas.
However, FORTRAN IV is a powerful language and not difficult to
learn- or use, and is also well-suited to many other kinds of
applications.

FORTRAN (FORmula TRANslation) is an algebraically-oriented
language. You write a FORTRAN program as a sequence of language
statements that combine common English words with quasi-algebraic
formulas. You then arrange groups of the language statements into
logical units called program units. One or more program units
comprise the entire executable FORTRAN source program.

THE FORTRAN IV
PROGRAMMING

LANGUAGE

When you are satisfied with the logic of your FORTRAN source
program, you use the RT-11 editor to create it as a file (like you did
in Chapter 5). You use tabs and spaces to properly format each line,
and you may choose to insert comment statements throughout the
source code to explain what various parts of the program are doing.
When you have finished creating the program as a complete, edited
file, you next enter it as input to the FORTRAN IV language
processor, which is stored on your system volume or on a separate
volume of its own. The FORTRAN IV language processor processes
(compiles) the language statements, converting them into internal
machine-language code called object code. This code is next
processed by the system linker, which combines your program units
and necessary system-supplied routines to make your program
suitable for execution. The development of an executable
FORTRAN program is represented in Figure 9-l.

1The PDP-11 FORTRAN IV programming language conforms to the
specifications for American National Standard FORTRAN X3.9-l 966.

9-l

Running a FORTRAN IV Program

CREATE - EDIT - COMPILE - LINK - RUN

Figure 9-l Evolution of a FORTRAN Program

THE FORTRAN IV
LANGUAGE
PROCESSOR

The FORTRAN IV language processor is a compiler that accepts
information in one format (i.e., your source program) and translates
it into another format (i.e., a machine language program). Since you
originally use the editor to create a FORTRAN source program in
ASCII format, you must next translate it into a machine format that
the computer can use. The FORTRAN compiler performs the trans-
lation, producing as output a new version of the program in object
format, called an object module. You may optionally instruct the
FORTRAN compiler to produce a listing of the source program at
the same time. Figure 9-2 is a diagram of the compiler’s function.

SOURCE

PROGRAM
b COMPILE

OBJECT

MODULE

LISTING

(OPTIONAL)

Figure 9-2 Function of a FORTRAN Compiler

USING LIBRARY
MODULES

Typical FORTRAN IV programs often require similar operations.
For example, most programs use routines and instructions that calcu-
late square roots, exponentials, and other arithmetic functions; handle
input and output operations; detect certain kinds of error conditions;
test values; calculate subscripts; perform conversions; and other
similar kinds of processes. Thus, these commonly-used operations
have been gathered into a special file called SYSLIB.OBJ (default
System Library), which is provided with the RT-11 operating system
and is stored on your system volume.

9-2

Running a FORTRAN IV Program

During processing of your source program, the FORTRAN IV com-
piler examines each language statement in your program. If you use
operations that are provided in SYSLIB, the compiler notes this and
makes the appropriate references to SYSLIB. It translates all the
information gathered during processing (your converted language
statements and the references to SYSLIB) into numerical data called
object code, a machine language code that the system linker can use.
The result of the compilation, therefore, is an object format file,
called an object module, which is automatically joined with SYSLIB
(containing many object modules) and with any other required
object modules, at link time. Linking all the necessary object
modules together produces a complete, workable FORTRAN
program.

In Chapter 5 you used the RT-11 editor to create a FORTRAN
source program, which you then stored on your storage volume.
Since a source program is in ASCII format, the next step is to use the
FORTRAN IV compiler to convert it to object code.

Some RT-11 systems store the FORTRAN IV compiler on a volume
apart from the system volumel. You can quickly determine whether
the FORTRAN IV compiler is on your system volume by using the
DIRECTORY command.

Note the system response. If the directory entry for FORTRA.SAV
is listed on your terminal, then the required FORTRAN files are on
your system volume. However, if FORTRA.SAV did not appear in
the directory listing, then the required files are not part of your
system volume. Before you can use the compiler, you must make a
volume substitution. Read the section in Appendix B entitled “Using
the FORTRAN/BASIC Language Volume”.

The next step is using the monitor COPY command to copy the
FORTRAN source program from the storage volume (where you
stored it in Chapter 7) back to the system volume which serves as the
default volume for input/output operations.

COMPILING THE
FORTRAN IV

PROGRAM

‘This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the FORTRAN system files. RX01 diskette is an
example.

9-3

Running a FORTRAN IV Program

1 FORTRAN 1

Remember that on your storage volume are two FORTRAN source
programs, the one you created (GRAPH.FOR) and the one provided
as part of the system (EXAMP.FOR). Which of these you should use
depends on the results of the source comparison you performed in
Chapter 6. If the comparison resulted in NO DIFFERENCES
ENCOUNTERED, copy your own program (GRAPH.FOR) as
follows:

Long Command Format

l c (3 1::’ Y (RET)

1”’ TWIT,? Vcli- : Gl7Rlw , FOR (RET)

To r (j R A 1::’ l-l , F- (3 K (RET)

Short Command Format

. [; fJ I” y hJ(:) I.., : [j 13 ,q (::I I..[+ 1::‘ f) I:;’ (1; I:i’ {:, 1::’ I..[t 1::’ (1) 1; (RET)

However, if the FILES ARE DIFFERENT message was generated by
the comparison, use the provided program (EXAMP.FOR) instead,
copying it under the new name GRAPH.FOR:

Long Command Format

l (:: (:) 1::’ y !RET)

F’rorr,‘? VOL.. : E:XRMI” + I”C)K (RET)
TO ‘? (j I:(,q 1::’ I-1 , I-’ j-) 1;; (RET)

Short Command Format

The FORTRAN source file now resides on your system volume
under the name GRAPH.FOR and is the file that you will process
with the FORTRAN IV compiler. The command used to compile a
FORTRAN source program is the monitor FORTRAN command.

Use the FORTRAN command with its /LIST option to compile your
program and produce a listing. The system prompt asks you to
supply the input file name. You can omit typing the .FOR file type
since the FORTRAN command assumes this file type unless you
indicate otherwise. The system will assign the name GRAPH.OBJ to
the object module and GRAPH.LST to the listing file and store both
newly-created files on the default storage volume.

94

Running a FORTRAN IV Program

Short Command Format

Compilation begins. If the compiler discovers an error during
processing, it prints a message. In this particular case, you should see
the following, on your terminal printer or screen:

This indicates that during processing, the FORTRAN IV compiler
found a total of six errors in the source program. It helps at this
point to look at the listing produced by the compiler, because more
information is shown there. Print the listing on either the line printer
or terminal, using the appropriate command below:

Long Command Format

(Line printer) (Terminal)

l I-“RrNTo , ‘T’ y 1::’ I_: f@

Fi l.es? Gl3AF’I-I + L.!j’T’ C@ Files? G I? A I-’ l-l . I... s ‘1’ (RET)

Short Command Format

(Line printer) (Terminal)

Your listing should look like the following example.

NOTE

It is not necessary that you understand the FORTRAN IV
language or the way this program works to successfully
complete the exercises in this chapter.

9-5

Running a FORTRAN IV Program

Iuo 05. .Jul .,17 12:15:13 F:‘AGU 00 1

1: L.XAMF’.FOti i ‘JI:RS.Ll.)N WC)UlDt:I))
I: III LI; It’FiC~l:;fu~fl I:viu~~i~(:f.~ A ip..wr ON .rtk: ‘rE:fct-jIi+L.
c (31 AN L.XTkHNAL. k’UNL:lION, FlJNiX,Y)
I: rtlf: L..LM.I rs UF ‘lt.i1: I-ut~ ALE DKI~~M~NEI:I by IHL uArA sIArme.N~rs
I.: u s r A H . I!; I .Ll..I..E.U W.KrH A .rABL.E LW HEIGHT FI...AOS
I.: ‘STlilNG” .lS “SFD ri) E,.,~.L.L.I A L.[NE. OF GRAPH I:Gk F’IIINr.LNG

000 1 (jl:Al.(LMlN,IMAX,MAX(r~:)~%MINtFLllATih -1)*iLMAX--LMlN)/t-LCtA.IiMAXI--I)
0002 LLIIGICALKL B1KINlii:l~~r.JirSIAR(:L00)
0003 I:fAIA XnIN,XMAX,MAXX/-.Sr5r45/
0004
ooo:>
0 0 0 6
0 0 0 I
0 0 0 Cl
OOO’r’
0 0 10
001:t
00 1:4
0 0 14
0 0 1 9

LlAr’A YM%N,YMAXrMAXY/--:irjr7~/
marA ~~MI:N,I:MAX/O.O~%.o/
L.:hl.L !;C(lf’Y i ‘.’ 1. 3 .J 4 5 h 7 El 9 i ’ I Sl AN
MAXF .::I. LN i Li r AR)
IdO :‘O .1X=-.1 vMAXX

X~~SCALiXMINrXMAXrMAXX~lX~
CALL I~E.F’li:hl!‘*‘r!ilriJ:NGrMAXY)
1 t: (I x . Iti N t I, .CItC. IX.I:.I~.MAXX) (iUr0 :!O

LI1.l 10 J.Y:::!vMAXY. 1
Y~~Sl:AL.iYM.lNsYMAXrMAXYrIY)
IflJN,-~tl’N’IiF~L..OA’l~MAXF~--J)$iF(JNiX

0 0 I. 6 I 0 !~iIliIN~JilY~~~:!ilA~~~M~NOiMAXl~~MAXOil rJ.l’I.lN)))
001 7 .JO m..i. t-‘tJrC;r~riI,PirFilN(i, 3 2)
OO.l~l Cfll. I.. I- x J I
(! 0 1 ‘> I:. Pill

llff!:;et,
0002:.!4
OOOL!50
0002b0
0 0 0 2 7 1.)
000300
0003l.L’

I L.lt<‘I FiRN 1 V I I., I” OF, -. ..lu J / / .l :! : 1 5 : I. 7 lJrl(ik 001

0001. I’IINC:IJ:UN I’:lJN!Xrl)
6002 Iti.~?.i(Jl:I I iX**:‘tY**? i
0005 I~~I.IN-~.X*Y*li‘*I-‘X~.‘(-ti)) rkh:!
r**** P
0004 kl- I UtrN
0 0 0 :.; k- NLI

I Ill-i I IiAN 1 ‘J !itor~~Ii’ M.:JP .1‘01. I’l‘<.,dl‘<.s”, 1.111 I-L t IJN

I. c.)~lii J. Vi.2 I‘.!. c3h .lc?!:, I t t”fill:l.: T :I>u,c, , A , :;.,. .:L’ OOOO~?O (23. wovd6!

N;kll,C? i ‘JpB’ I.) i ‘ 1‘ cj E! .I, N;.,n,c, I !1 r’ C:’ I) ,P f c; e-l. Namu 7 UP.P Offset,
I UN F;*4 FLtv 000004 x ti*4 I? 000000 Y Frt4 I? 000002
Ii liY4 0000.10

9-6

Running a FORTRAN IV Program

The first part of the listing shows the main program unit and consists
of the language statements up to, but not including, the function.
This is followed by a diagnostics list, then by a storage map. Next the
language statements comprising the function program unit are listed,
again followed by a diagnostics list and a storage map.

Before considering the individual sections of the program listing, first
examine the program logic to determine what this program should
do. The first few lines of this program are user comment.lines that
briefly describe the program. Essentially, this program produces on
the terminal a graph of a “three-dimensional” function, FUN(X, Y).
The graph is plotted using 45 lines down and 72 characters across the
terminal page. The limits of the X and Y axes are +5 and -5. The
third dimension, height, is a real number within the range 0 to 1 and
is represented in the listing as a number within a scale of 1 to 9.
These dimensions are illustrated in Figure 9-3.

The SCAL function determines the value of the next coordinate on
the graph. The statements within the DO loops calculate the
coordinates using the SCAL function and determine the height value.
This is done for an entire line of coordinates across the terminal

72 Characters

-5

Figure 9-3 Dimensions of FUN(X, Y)

9-7

Running a FORTRAN IV Program

page. The entire line is then printed on the terminal using the CALL
PUTSTR statement; the number 7 in this statement is the
FORTRAN method of naming the terminal as the output device.
This procedure is repeated until all 45 lines of the graph have been
printed.

The function to be plotted is shown in the last few lines of the
program. It is compiled as a separate program unit and you can edit
these lines to plot any function of your choice (several alternate
functions are suggested later in the chapter).

This program as it stands contains errors. The compiler detected
certain error conditions during processing that prevent the program
from working properly. The compiler printed appropriate messages
in the diagnostics sections of the program listing.’ Look first at the
messages following the main program unit. Errors were discovered in
lines 3, 4, 8, 12, and 16.

The messages for lines 3 and 4 indicate that the floating-point
variables “XMIN” and “YMIN” are assigned integer values. The
DATA statements must be changed. (Note that the same error exists
for “XMAX” and “YMAX”; however, the compiler lists only the
first error that it discovers in a line. Both “MAXX” and “MAXY” are
integer variable names, so no error exists for them.) You must
correct the DATA statements (lines 3 and 4), then, as follows:

DATA XMINyXMAXrMAXX/-5eOr5.Oy45,’
DATA YMIN~YMAX~MAXY/‘-~.OY~.O~~~/

The next two messages in the diagnostics section show that reference
has been made from both lines 8 and 12 to an undefined label. (Line
12 is actually the second portion of line 11, the GO TO statement.)
Statement label 20 is referenced in each case, but only labels 10 and
30 are shown in the program. This indicates that either a statement is
missing, or that a typing error exists. Examination of the program
logic shows a typing error in line 17. Label 30 should actually be 20.
Correct line 17 as follows:

20 CALL PUTSTR(7rSTRINGr’ ‘1

1 Refer to the RT-11 System Message Manual for greater detail of any system
messages printed.

9-8

Running a FORTRAN IV Program

The last message in this diagnostics section states that an incorrect
number of subscripts was given for the array “STRING”. Again,
examination of program logic shows that the error is actually in line
2. “STRING” is really a vector (a one-dimension array), not a matrix
(a 2-dimension array). Thus the comma is a typing error and line 2
should be changed as follows:

LOGICAL*1 STFi’ING(133)rSTAB(lOO)

Skip next to the diagnostics section for the FUN program unit. The
message printed there refers you back to the source listing, to line 3.
A letter “P” appears next to this line. The RT-11 System Message
Manual describes a “P” error as an indication of unbalanced
parentheses. Notice that the parentheses are not properly matched in
this line. Thus, line 3 should be corrected as follows:

FUN=(X*Y*R*EXP(--HI)**2

This explains the errors flagged by the compiler in the diagnostics
sections. Other sections of the program listing (storage map, for
example) simply provide additional information that is helpful to
programmers who wish to check the data types of various symbols
and later make sure that object modules have been appropriately
linked.

Before you can continue the exercises in this chapter, you must edit
those statements in the source program that contain errors. If
necessary, review the editing commands in Chapter 5. Then use the
RT-11 editor to edit the file GRAPH.FOR on your system volume so
that the five lines pointed out are error-free. Do not rename the file.
When you are ready, recompile the program using the FORTRAN
command and obtain a new object module and a new listing. This
time the program should compile without error (i.e., no diagnostics
should list). If diagnostics occur, you have not edited the program
correctly. Compare listings and try to correct your errors or go back
to the beginning of this chapter and repeat the demonstration.

The object module produced by the FORTRAN command is in itself
incomplete. As mentioned earlier, it needs parts of the system
library, SYSLIB, and perhaps other object modules and libraries as
well, to form a complete functioning program.’ All required object
modules must be joined, or linked together, before the program can
work.

LINKING OBJECT
MODULES

TOGETHER

lFor more information on linking files and using library files, see Chapter 12
and 13 respectively.

9-9

Running a FORTRAN IV Program

I LINK

Even if your program did not require any other object modules, you
must still link it. In addition to joining object modules together, the
link operation adjusts the object code to account for many program
units being placed one after the other. The result of the link
operation is a memory image load module, which is actually a picture
of what computer memory looks like just prior to program
execution. Figure 9-4 is a diagram of the link operation.

SYSLIB

Other OBJ’s

OBJECT * LINK m LOAD

MODULE MODULE

Figure 9-4 The Link Operation

To link the object modules, use the monitor LINK command. The
system prompts you to enter the names of the input modules and
any libraries other than the system library to be joined together. You
can omit typing the .OBJ file types in the command line, since the
LINK command assumes this file type for input. The system
automatically assigns the file name of the first input file and a file
type of .SAV to the output file. The linker will always scan the
SYSLIB library if it is present on the system volume.

Long Command Format

Short Command Format

+ LINK GRRF’H (RET)

9-10

Running a FORTRAN IV Program

Any messages printed on the terminal identify error conditions
discovered by the system during the link operation (for example, if
you fail to specify all the object modules that are needed as input).
However, assuming you edited your source program correctly and
that it compiled without error, it should also now link without error.

A load module is one that you can run on the system. Unless your
program contains logic errors that prevent it from running properly
(errors which the system cannot always detect), running the .SAV
version of your file should produce the results you intended.
However, if logic errors exist within your program, running the
program will produce either erroneous results or none at all. If this is
the case, you must study the source program, rework it, reedit it, and
perform the compile and link operations again.

If your FORTRAN program is error-free, running the .SAV version
should produce the expected results. In this demonstration, running
the GRAPH.SAV file should produce a graph on the terminal printer
or screen.

Before you run GRAPH.SAV, you have the option of changing the
output device from the terminal printer or screen to the line printer
by using the monitor ASSIGN command to assign device names (see
Chapter 4, Assigning Logical Names to Devices). If you prefer to
print the graph on the line printer, simply assign the logical device
name 7 (which is the FORTRAN code for the terminal) to the line
printer code (LP:). You have designated a new output device without
altering the source program. To change the device assignment to the
line printer, type:

Long Command Format

.ASSIGN (RET)

Short Command Format

+ASS:CGN 1.J’: 7@

This assignment remains in effect until you deassign the names or
reboot the monitor.

Now, to execute the FORTRAN demonstration program, use the
monitor RUN command. You can omit typing the .SAV file type
since it is assumed within the RUN command. Type:

RUNNING THE
FORTRAN IV

PROGRAM

cl RUN

9-11

Running a FORTRAN IV Program

COMBINING
OPERATIONS

Long and Short Command Format

. RUN GRAF’H (RET)

After a brief pause, the graph begins to print on the terminal (or line
printer) and should look like the graph shown in Figure 9-5.

**
x 111111111111111111 111111111111111111 *
* 111111111111111111111 111111111111111111111 *
* 11111111 11111 11111 11111111 *
* 1111111 1111 1111 1111111 1
* 111111 111 22222222222 111 22222222222 111111 *
11111 22222 2222 111 111 2222 22222 11111
*1111 2222 3 22 11 11 22 3 2.92 11111:
t1111 222 333333333 22 11 11 22 333333333 222 11111
t111 22 333 333 22 11 11 22 333 333 22 111*
111 222 333 4444 332 1 1 2 33 4444 333 222 111
111 222 33 4444444 3 2 11 11 2 3 4444444 33 2 2 2 111
111 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111
8111 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111*
1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111
11111 222 33 444 3 2 11 112 3 444 33 222 11111
* 1111 22 3333 333 2 1 1 2 333 3333 22 1111 *
* 11111 222 22 11 11 22 222 11111 *
x 11111 222222222 111 111 222222222 11111 *
1: 11111111 1111 1111 11111111 *
* 1111 1111 *
1: *
* *
* *
* 1111 1111 *
* 11111111 1111 1111 11111111 *
x 11111 222222222 111 111 222222222 11111 *
* 11111 222 22 11 11 22 222 11111 *
* 1111 22 3333 333 2 1 1 2 333 3333 22 1111 *
11111 222 33 444 3 2 11 112 3 444 33 222 11111
t1111 222 33 44444444 33 2 11 11 2 33 44444444 33 222 1111*
Xl11 222 33 4444 444 3 2 11 11 2 3 444 4444 33 222 111*
Xl11 222 33 4444 444 33 2 11 11 2 33 444 4444 33 222 111)
x111 222 33 4444444 3 2 11 11 2 3 4444444 33 222 111*
$111 222 333 4444 33 2 1 1 2 33 4444 333 222 1118
$111 22 333 333 22 11 11 22 333 333 22 111*
t1111 222 333333333 22 11 11 22 333333333 222 1111*
81111 2222 3 22 11 11 22 3 1222 1111*
111111 22222 2222 111 111 2222 22222 11111*
x 111111 22222222222 111 111 22222222222 111111 1
* 1111111 1111 1111 1111111 *
1: 11111111 11111 11111 11111111 *
* 111111111111111111111 111111111111111111111 *
* 111111111111111111 111111111111111111 *
**********a***

Figure 9-5 The Result of GRAPH.SAV

To produce these results, you first compiled the FORTRAN source
program (GRAPH.FOR), then linked it with the default library
(SYSLIB.OBJ), then ran the resulting .SAV file (GRAPH.SAV). You
can combine these three operations using one monitor command, the
EXECUTE command. This command instructs the system to select
the appropriate language processor (which you indicate as an
option), then process, link, and run the program. For example, to
combine the compile-link-run operations that you performed in this

9-12

Running a FORTRAN IV Program

chapter, you would use the following command (do not actually
type this command until you have read the next section, Alternate
Functions):

Long and Short Command Format

,EXECUTE (;RAI-‘I-I/FC)RTRRN/L.IST (RET)

The following are some alternate functions that you can substitute in
your FORTRAN source program to produce different graphs, SimpIy
reedit the program (GRAPH.FOR) so that lines l-5 in the function
portion at the end contain one of the following alternate functions.
Then use the EXECUTE command to rerun the program. The source
program compiles, links, and runs and the new graph automatically
prints on the terminal (or lineprinter).

FUNCTION 1

FlJNCTIClN FIJN(X9Y)
FUN-EXP (-SQRT (X**2+Y**2) 1
RETURN
END

FUNCTION 2

FUNCTION 3

I::‘LJNCT1:ClN FIJN(XrY)
F’UNz:~:XI::’ (.t.$;[:Jl?‘T’ (X*#2$.)‘**2 j) ,‘:I. 1, 77, xj
f)E:‘T’uIqN

END

EXECUTE
Combine the compile-link-run operations into one command.

EXECUTE file/FOR.TRAN
Combine the compile-link-run operations into one command,
and specify the input file to be a FORTRAN file.

ALTERNATE
FUNCTIONS

SUMMARY:
COMMANDS TO
RUN FORTRAN

PROGRAMS

9-13

Running a FORTRAN IV Program

FILE
MAINTENANCE

EXECUTE file
Combine the compile-link-run operations into one command.
Specify the libraries to be used during linking.

EXECUTE/LIST
Combine the compile-link-run operations into one command.
Obtain a listing file of the source program and print on line
printer.

FORTRAN
Compile the FORTRAN source program and produce an object
module.

FORTRAN/LIST
Compile the FORTRAN source program and produce both an
object module and a listing file.

LINK
Link individual object modules together to form a complete
program and produce a load module.

RUN
Run the indicated load module.

Before continuing further you should perform the necessary file
maintenance operations. Obtain a directory of all files on your
system volume that have the name GRAPH regardless of file type;
these files were created as a result of the exercises in this chapter:

Long and Short Command Format

The fact that you have corrected errors in the source file
GRAPH.FOR makes the version of that file on your storage volume
obsolete. Thus, transfer the updated copy from your system volume
to VOL:, replacing the copy of GRAPH.FOR on the storage volume
with the new version.

9-14

Running a FORTRAN IV Program

Long Command Format

Short Command Format

l (1; (1) 1::’ y (j 13 & 1::’ I-1 + I::’ Q I:\’ V f) 1”. : [; I? i-1 F:* l-1 . 1: (j I:$ (RET)

Next similarly transfer GRAPH.LST and GRAPH.SAV to your
storage volume. This allows you to examine a listing or rerun the
FORTRAN program without recompiling and relinking the source.

Long Command Format

Short Cdmmand Format

, COPY GRAPI-I + L.S’r’ I GRAF’I-I l SAV VUI... : (RET)

Once you have transferred all files of value to your storage volume,
delete the useless files from the system volume (i.e., all the GRAPH
files) :

Long Command Format

Short Command Format

9-15

Running a FORTRAN IV Program

REFERENCES

Finally, obtain an up-to-date directory listing of your storage volume
so that you can see its current status:

Long and Short Command Format

This completes the FORTRAN demonstration. Continue to Chapter
12 to read about the linking process. If you followed the special
instructions in Appendix B to load the language volume, leave this
volume in device unit 0 until you have finished Chapter 12.

McCracken, Daniel D., A Simplified Guide to FORTRAN Programming. New
York: Wiley, 1974.

An introduction to programming in the FORTRAN language.

PDP-11 FORTRAN Language Reference Manual (DEC-1 I-LFLRA-C-D, DNl).
Maynard, Mass. : Digital Equipment Corporation, 1977.

A reference manual and guide to programming in the PDP-11 FORTRAN
IV language.

RT-11 FORTRAN IV Installation Guide (DEC-1 l-LRSIA-A-D) Maynard,
Mass.: Digital Equipment Corporation, 1977.

An RT-1 l-specific manual that contains instructions for installing the
RT-11 FORTRAN language processor, and that describes differences be-
tween versions and known problems.

RT-11 RSTS-E FORTRAN IV UserS Guide (DEC-1 l-LRRUB-A-D). Maynard,
Mass. : Digital Equipment Corporation, 1977.

An RT-1 l-specific manual that contains information necessary to compile,
link, run, and debug a FORTRAN IV program.

9-16

CHAPTER 10

RUNNING A BASIC-1 1 PROGRAM

The BASIC-l 1 program language’ is a machine-independent program-
ming language that is one of the easiest languages for the beginning
programmer to learn. It has both elementary language features that
you use to write simple programs, and more advanced operations
that allow you to produce complex and efficient programs. In addi-
tion, a special “immediate mode” lets you use BASIC like a calculator
to obtain instant answers to mathematical problems.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) is con-
versational in nature. It uses simple English keywords and common
mathematical expressions to form easily-understood language
statements.

You write a BASIC program as a series of one or more program lines.
You begin each program line with a number that both identifies the
line and indicates the order in which the line will be processed.
Individual program lines contain one or more BASIC language state-
ments that define the operations to be performed.

When you are satisfied with the logic of your BASIC source program,
you create it as a file. However, unlike other programming languages
that you may use, you create the file under the control of the BASIC
language processor, which is part of the BT-11 operating system and
is stored on your system volume or on a separate volume of its own.
Thus, you use commands that are part of the BASIC language
processor to create and edit the program, list it, run it, and save it for
later use.

The BASIC language processor is an interactive interpreter. It allows
you to create and execute a program in its entirety or a few lines at

THE BASIC-1 1
PROGRAMMING

LANGUAGE

THE BASIC
LANGUAGE

PROCESSOR

‘BASIC-1 1 is a superset of the standard BASIC language developed at Dartmouth
College.

10-I

Running a BASIC-l 1 Program

USING
THE BASIC
INTERPRETER

r---mM---mm--------
I -7
i

BASIC
I

I I

I
CREATE d EDIT RUN I

I

Figure 10-l Functions of the BASIC Language Processor

a time. The interpreter examines each program language statement,
interprets it, and executes it before going on to the next. If it dis-
covers an error that prevents further processing, it prints a message
on the terminal informing you of the error condition and stops. You
correct the error so that execution can continue past that point, and
then rerun the program.

The functions of program creation, editing, processing, and execution
are all handled by the BASIC language processor. Some RT-11
systems store the BASIC interpreter (language processor) on a volume
apart from the system volume.’ You can quickly determine whether
the BASIC interpreter is on your system volume by typing the
monitor DIRECTORY command and specifying the BASIC.SAV
program.

Note the system response. If the directory entry for BASIC.SAV is
listed on your terminal, then the required BASIC files are on your
system volume and you are ready to use the interpreter. However, if
BASIC.SAV did not appear in your listing, then the required files
are not part of your system volume. Before you can use the inter-
preter, you must make a volume substitution. Read the section in
Appendix B entitled “Using the FORTRAN/BASIC Language
Volume”.

‘This is true for any RT-11 system volume that does not have enough free
blocks to accommodate the BASIC system files. RX01 diskette is an example.

1 o-2

Running a BASIC-l 1 Program

Now use the monitor BASIC command to activate the BASIC
interpreter:

Long and Short Command Format

* B A s :I: c: (RET)
BASI[;-..j, .j/R’I’.... j, 11. ()()2 ()2
UPTIONAI... F~IJNi3’T’IWvE; (ALI... Y N i:I N Iii: v Cl I:i’ :I: N 11 :I: v :I: II I.J A I... j ‘?

A prompting message is printed by BASIC. You must respond with
an A, N, or I and a carriage return to indicate whether you want to
preserve all, none, or some of the arithmetic functions initially pro-
vided by BASIC. BASIC’s functions include operations that calculate
random numbers, determine absolute values, convert octal and
binary numbers to decimal, and so on. You can conserve memory
space by saving only those functions that your program needs. How-
ever, for now, instruct BASIC to save all the functions by typing:

BASIC prints the READY message to indicate that it is ready to
accept a BASIC command. Any text that you type that is not
preceded by a BASIC command is accepted as program (or immediate
mode) input. If at any time you wish to return to the monitor
command mode, simply type the BYE command following the
READY message. READY appears after any completed BASIC
execution, one interrupted by a double CTRL/C, or any BASIC
wait condition terminated by a single CTRL/C.

NOTE

It is not necessary that you understand the BASIC language
or the way the examples work to successfully perform the
exercises in this chapter.

Immediate mode allows you to use the BASIC interpreter as you
would a calculator to obtain immediate answers to arithmetic prob-
lems. You enter the appropriate BASIC statement keyword and any
necessary mathematical formula. When you type a carriage return
(the RET key), BASIC immediately calculates and prints the results.
Use the terminal DELETE key and the CTRL/U command to correct
any typing errors. For example, type:

I BYE

Immediate Mode

1 o-3

Running a BASIC-l 1 Program

u PRINT

Creating and
Editing a
BASIC Program

PRINT (128t75)XJ (RET)
609

BASIC adds the two numbers in parentheses, multiplies them by 3,
and prints the answer. The PRINT statement causes the answer to be
printed on the terminal. As another example:

PRINT INT(34,67) (RET)
34

READY

The greatest integer less than or equal to 34.67 is printed.

You can combine several statements on a single line, or on several
lines, including variable names, arithmetic equations, and data.
Individual statements are separated from one another by a back-
slash (\) character. BASIC considers all the information, calculates
the answer and prints it on the terminal. For example:

The first statement equates variable names with values; the second
statement introduces a formula for calculating a result and prints it.

You can use immediate mode to solve fairly lengthy and complicated
mathematical problems by combining statements and printing identi-
fying messages. However, immediate mode information is temporary.
You cannot save it, and you can change it only by retyping every
statement line. If your needs are more complex, or if you want to
save your statements, you should create a BASIC program.

To create a BASIC program, you simply assign line numbers to
language statements and then type the numbered statements on
the terminal keyboard.

10-4

Running a BASIC-l I Program

Now your program lines are saved in memory and you can transfer
program control to specific lines within the program, repeat parts
of the program any number of times, store the entire program for
later use, and perform other similar operations that are not possible
in immediate mode.

Once you have created the program, you use BASIC editing com-
mands to list lines, change lines, add and erase lines, and correct
typing errors. In addition to the DELETE key and the CTRL/U
command, BASIC provides a SUB command (SUBSTITUTE) for the
purpose of correcting typing errors. This command allows you to
substitute new characters for existing ones in a line. For example,
type:

The SUB command substitutes the letters BAS for BAD in line 10.
Use a delimiting character (shown here as @) to separate the old
text from the new. The delimiter can be any character as long as
it is unique in the line. The corrected line is automatically printed
by BASIC following use of the command. As another example, type:

15 B:r.l()\[;:::::; (RET)

20 I... ET A’- b4.C \ PI3 Ii\1 T c: (RET)

There are two typing errors in line 20; the - should be an = and the
C at the end of the line should be A. These errors can be corrected
with the SUB command, as follows:

READY

1 SUB

The second SUB command changes the second occurrence (specified
by the 2 after the last @) of C to A.

1 o-5

Running a BASIC-l 1 Program

El DEL

I LIST

El LISTNH

You can erase an entire line by typing the line number followed by a
carriage return,

or by using BASIC’s DEL command’. Use the DEL command
(DELETE) to erase a single line or several:

This erases all numbered statement lines with numbers between and
including lines 15 and 20.

To list lines of a program, BASIC provides the LIST command. First,
create a few program lines:

List individual lines by specifying the line number. For example,
type :

1.. :I: !ii’r’ 5 (RET)

Notice that BASIC prints a header line. Since you have not as yet as-
signed a name to your program, BASIC assigns it the name NONAME

1Do not confuse the BASIC DEL command with the DELETE key on the
terminal keyboard.

1 O-6

Running a BASIC-l I Program

and prints this name, along with the date (which is only correct if
previously entered via the DATE monitor command) and the time
when you use the LIST command. You can omit the header line by
using the LISTNH command instead of the LIST command:

50 NIZXT I 5 5 F’ ,i I[N , ” TtiI_: TQTAI... IS a i T
88 ENU

Ft E_: AIS Y

By typing the LIST or LISTNH commands without indicating any
line numbers, you can print on the terminal a listing of your entire
program. Terminate the command with only a carriage return:

REMIY

Finally to erase the entire program, which you must do before typing
a new program, use the SCR command (SCRATCH). Type:

SCR (RET)

All program lines are erased from memory.

line #
Erase the indicated program lines.

DEL line #
Erase the indicated program lines.

cl SCR

SUMMARY:
BASIC EDITING

COMMANDS

LIST
List the entire program and print a header that includes the
program name, date, and time.

1 o-7

Running a BASIC-l 1 Program

LIST line #
List the indicated lines and print a header that includes the
program name, date, and time.

LISTNH
List the entire program but do not print a header.

LISTNH line #
List the indicated lines but do not print a header.

SCR
Erase all program lines from memory and change the name to
NONAME.

SUB line # @FIRST @ SECOND @n
Replace the nth occurrence of the FIRST character(s) with
the SECOND character(s) in the indicated line (default is n=l).

Create the following demonstration program1 using the appropri-
ate BASIC editing commands, exactly as it appears here. If you
forget to insert a line, type it at the end or when you notice the
omission; BASIC sorts and arranges lines by number prior to execu-
tion regardless of the order in which they are typed. When you are
done, list the entire program and make a final check for typing
errors.

10 0
101
110
I ‘I. R
Ii!0
.I 2 5
130
140
200
L'O 1
I' I 0
2 1 5
I'30
?40
L' 5 0
260
270
.? El 0
“? 9 0
300
3 0 1
3 0 5
3 1 0
3 2 0
330
.JYO
360
370
380
390
400
401

li1.M rtit PfiOGliAM :!:J M,~Illlll S
FiE M
PFIlNI ’ w t,. xi I: 1; I N w 1 I II ,! .3 h A r c l-1 k ii . Yl.1l.l MIJUE:. f’lR!-il. YlJlJ MAY TAKE’
I-:‘I-c I N r 41 1 , 2v Ot? 3 M~~ll.:Hl !1. .rYF’i: YOIJF: r:tilllCk I’IlLl.ClW[:D IiY A (:AF<.’
F’tZJN~l “h’lRI;L IkE: IIJFiN. IHEN It-IL COMl”‘l.IrEFc C:Hl.IlJSC!; 1” 2~ IJK 3”
PIIINT ‘MATCHES t Y0I.I CtlOOSli~ AliAJ N, ANI:1 !:;(I ON. WtiCJEUL,t: MlJSr’
t~‘fiiNT ” TAKE rHt I.ASI MATCH, LOSES, ’
PRINI \ 1 E: r M = 2 d
IiL:M THE IilJMAN MOVf:$
FiF’M
f’t’1N.r ‘\ I’klNI “II--ICI-il- RF<L NllW’iMi”hRII:tIt li.”
IF’FC 1 N r \ lt’K[NI “Il(JW MANY 1111 Yllll IRhL”2
INPUT ti
lf Ii ‘M THEN :I.10
Lt ti..i.Nrctt rtl1.N :.i~~
.CF H-.:70 1Hl:‘N 510
II: H .:-4 IIHEN bltf
L L I M -..M--F-I
IF- M::O IIHILN 410
t;EM .THl: I:I.lMl~‘UI r Ii MC)Ut..6
li ti. M
[F Hz-1 rtw 44(/

1. L.T ti=M- 4XINT i M/4)
II: R: ‘1 rtIkN .5!50
LET I: =IN.I (.<hl?NIl) +l \ lil) ICI 560
ILET C=(I?t.J~---rr*INr((rit.l),‘4)
LFi r M-;-M .-C
1F ML-O THEN 440
F’ F< I N T \ PRINT ” I HE CCJMPLITER TOOh’ iC i * t . . . ’ ;
00 .rn zio
FiEM SOMEHOtIY WON
REM

‘23 Matches, 101 BASIC Computer Games, Maynard, Mass.: Digital Equipment
Corporation, 1975.

10-8

Running a BASIC-l 1 Program

410 PR1N.T \ PRINI “THE CllMF’UrEH WON. ” \ GLl .TCl YYY
440 PRINT ‘\ F’RIN.‘T ‘YOU WON. ’ \ G 0 .r 0 0 9 0
500 REM HAD INPUT
501 REM
510 PRINl ‘ENTER 0NL.Y 1, 2, OR 3: \ GO TO 215
999 EN11

As you can see from the first few lines of the listing, this program is a
mathematical game in which you match your logic against the
program logic. The PRINT statements in the program print messages,
game instructions, results, and so forth, on the terminal. The REM
statements identify comment lines - remarks that provide general
information about the program, but that are ignored by BASIC
during processing. The INPUT statement in line 230 allows you to
supply data from the terminal. Depending on the value you enter,
program control transfers to various other parts of the program. For
example, if you type an illegal value, program control skips ahead to
a PRINT statement in line 5 10 informing you of your mistake and
then returns to line 215 to ask for a value again. The mathematical
algorithms of this program are in lines 3 10 through 350 and
determine the number of matches the computer will select based on
your choice.

Once you have typed the program and checked the listing to be sure
that it corresponds to the example, you are ready to run it. The
BASIC RUN command initiates program execution. This command
prints a header that includes the program name, data, and time. If
you want to omit the header line, type the RUNNH command
instead.

RUNNING A
BASIC PROGRAM

r 1

I I RUN

HUNNI-I (RET)

If you typed the program correctly, you will see this text print on
your terminal:

NOTE

If this response does not appear, you have not entered the
program correctly. Compare your listing very carefully

1 o-9

Running a BASIC-l 1 Program

against the one provided earlier. Spacing does not matter,
but all other characters must match. To correct your errors
type CTRL/C, which, under control of BASIC only,
returns you to BASIC command mode, indicated by the
READY message. Correct the program and then rerun it.

When the program pauses and asks you a question, you must supply
data, in this case a 1, 2, or 3. Type your choice (represented here by
n) followed by a carriage return:

?SYN’TRX ERtWR n.r I....2’NE 250

BASIC discovered an error* in line 250 that prevents further
processing. Check line 250 in your listing or list it on the terminal:

Note that a right parenthesis is missing after the second H in this line.
Correct the line using the SUBSTITUTE command:

You are ready to run the program again. Type:

I? 1.1 N N I-I (RET)

BASIC begins processing at the start of the program.

‘Refer to the RT-11 System Message Manual for greater detail of any messages
printed during normal system use.

10-10

Running a BASIC-l 1 Program

Type your choice again. But notice this time that a different kind of
error is detected. The BASIC interpreter has entered an infinite loop,
a series of commands that it repeats endlessly. After several lines
have printed, type a double CTRL/C; this interrupts execution and
returns control to BASIC command mode.

THE Ci:lMI::‘~JTEI:i ‘rO)CII< I. e . + +
T I-I E I: G M F’U T El:i TCI Cl IC :I. + . + +
THE COMF:‘U’rE:li’ TCIW~ 3 + + a +
Tl-IE: CClMF’IJTiii:I:ir TOOK 2 . + + +
‘rt.IE C(JMI::‘[J’T’E:li ‘r’C)(:Il< 2 + + + +
THE COMF’IJTER TOOK 3 + + + +
THE COMF’IJTER xxx j. , +. .
THE COMF’UTEli TOCIK I. . . + .
THE COMF’IJTER TOOK 9 . . + +
THE COMF’UTER TOOK 1 + . + +
THE COMF:‘IJTER woli 3 . . * .
(CTRLIC) (CTR)
STOP AT LINE 380

READY

An infinite loop is a programming logic error. However, since the
error does not prevent processing, BASIC does not print an error
message. Instead BASIC is caught in a loop of instructions and
executes them endlessly. This particular loop is obvious because it
prints a line of text; other kinds of loops may not be so evident. At
this point you must examine the program logic to determine why
these instructions are being repeated.

Look at your listing of this program. The problem in this case is in
line 390. This line instructs program control to return to line 3 10;
therefore lines 3 10 through 390 are repeated endlessly without ever
obtaining your next value choice. Program control should really
return to line 2 10. Correct line 390 as follows:

SUB JYO @a?2 (RET)
3YO GO TO 2X0

Now you are ready to run the program again. This time the entire
program should execute without error. Enter your value choices
when requested. (A hint to playing the game: your first value choice
determines whether you can win; if your first choice is wrong, the
program has the advantage throughout.) A sample run follows.

10-l 1

Running a BASIC-l 1 Program

SUMMARY:
BASIC EXECUTION
COMMANDS

RUN
Execute the BASIC program currently in memory; print a
header line including the program name, date and version
number.

RUNNH
Execute the BASIC program currently in memory; omit the
header line.

CTRL/C
Under control of BASIC only, interrupt execution of the
BASIC program and return control to BASIC command mode.

10-12

Running a BASIC-l 1 Program

BYE
Return control to monitor command mode (only when using
BASIC).

You can transfer the BASIC program currently in memory to a
storage volume by using the SAVE command of BASIC. The SAVE
command copies the program to the storage volume giving it the file
name and file type that you indicate in the command line. A file
type of .BAS is assigned automatically unless you indicate otherwise.

Use the SAVE command to store this BASIC program as
MATCH.BAS on the storage volume (VOL:) as follows:

S A U E ‘J 0 I... : MA I’ C I-I (RET)

READY

After you save a BASIC program on a storage volume, you can create
a new program in memory by typing the BASIC NEW command.
This command erases the current memory contents and asks you for
a new program name:

NIKW (RET)
NEW FILE NAME--

Type any file name you wish and BASIC assigns it to the file you
create. Or you can respond by typing only a carriage return; BASIC
then assigns the file name NONAME.

Another way to create a new program in memory is to type the
BASIC SCR command. This command simply erases the current
memory contents. It assigns the name NONAME:

SCR (RET)

REALsY

To use an existing BASIC program, one that you have previously
stored on a storage volume, type the BASIC OLD command:

FILE
MAINTENANCE

1 SAVE

El NEW

El OLD

OLD @Q
OLIl FILE NAME--

10-13

Running a BASIC-l 1 Program

I I
REPLACE

Reply by typing the device name, file name and file type of the file
that you want to use. If you omit an explicit device name, BASIC
assumes DK: (the default volume), and if you omit an explicit file
type, BASIC assumes .BAS. BASIC erases memory and then copies
the program from the volume into memory. For example, type:

MATCH (RET)
READY

This copies DK: MATCH.BAS back into memory.

Assume that you have edited or changed the MATCH.BAS file and
now want to transfer it back to VOL:. Since the file already exists as
MATCH.BAS on that volume, you must use the BASIC REPLACE
command:

REF’LRCE: vm.. : MnTCl-l (RET)

READY

The REPLACE command replaces an existing file with a new version.

The SAVE and REPLACE commands copy a BASIC program from
computer memory to a storage volume. As these commands copy the
program, they convert it from the internal format used by BASIC to
ASCII format. Thus, you can, if you prefer, use the RT-11 editor to
create and edit BASIC programs, since the editor also uses ASCII
format. However, many users would rather use BASIC to create and
edit a BASIC program, since they can then run the program, reedit it,
rerun it, and save the new version, all in BASIC command mode,
rather than perform the several corresponding monitor commands.

The last file maintenance operation that you should perform is to
obtain an up-to-date directory of your storage volume so that you
can see its current status; however, you must return to monitor
command mode to do this. Type the BYE command; this BASIC
command (rather than CTRL/C) returns control to monitor
command mode. Next use the DIRECTORY monitor command to
check the status of your storage volume.

10-14

Running a BASIC-l I Program

NEW
Create a new BASIC program, assigning the file name indicated.

OLD
Copy into memory (for use under BASIC) an existing BASIC
program.

REPLACE
Copy the BASIC program currently in memory to the indicated
storage volume, replacing the version that already exists on that
volume.

SAVE
Copy the BASIC program currently in memory to the indicated
storage volume.

This completes the BASIC demonstration. Before you continue to
Chapter 14 to learn about program debugging, make sure that the
main system volume is loaded in device unit 0. If you followed the
special instructions in Appendix B to load the language volume, you
should now stop the system, unload that volume, load the main
system volume, and rebootstrap the system.

BASIC-11 Language Reference Manual (DEC-1 l-LIBBB-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1976.

A reference manual and guide to programming in the BASIC-l 1 language.

BASIC-1 l/RT-11 Installation Guide (DEC-1 l-LIBTA-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

An RT-1 l-specific manual that contains instructions for installing the
RT-11 BASIC language processor and that lists known problems and
differences between versions.

BASIC-l l/R T-l 1 User’s Guide (DEC-1 l-LIBUA-A-D). Maynard, Mass. Digital
Equipment Corporation, 1977.

An RT-1 l-specific manual that contains information necessary to create,
edit, run and debug a BASIC program.

SUMMARY:
BASIC FILE

MAINTENANCE
COMMANDS

REFERENCES

10-1.5

CHAPTER 11

RUNNING A MACRO-l 1 ASSEMBLY LANGUAGE PROGRAM

The MACRO-l 1 programming language is a machine-dependent pro-
gramming language developed for the PDP-11 programmer, or for the
FORTRAN IV programmer who intends to combine assembly lan-
guage routines and FORTRAN routines. *The MACRO-l.1 language
enables the knowledgeable programmer to access all the features of
the RT-11 computer system using a precise and efficient program-
ming code.

The MACRO-l 1 assembly language uses the PDP-11 instruction set,
a list of mnemonic instructions that correspond to various PDP-11
computer operations. These instructions allow you to add, compare,
increment, complement, and perform many other manipulations on
numerical data. The instructions are summarized in a pocket-sized
folding card, called the PDP-11 Programming Card (Figure 1 l-l),
and are described in detail in the PDP-11 Processor Handbook. By
choosing the appropriate instructions, and by providing any addi-
tional data needed, you can create a complete program.

Figure 1 l-l PDP-11 Programming Card

You write the MACRO-l 1 program as a sequence of lines, each a
single assembly language statement in the following format:

THE MACRO-l 1
ASSEMBLY
LANGUAGE

LABEL: OPERATOR OPERAND(S) COMMENTS

1 l-l

Running a MACRO-l 1 Assembly Language Program

THE MACRO-l 1
LANGUAGE
PROCESSOR

The operator and/or operand are either instructions selected from
the PDP-1 1 instruction set, data needed by the instructions, or
assembler directives (instructions to the assembler to guide the
assembly process). The optional statement label identifies the state-
ment line so that you can refer to the instructions or data on that
line from other parts of the program. Optional comments describe
generally what operations are being done. Sequences of language
statements constitute a routine (to perform a specific function);
groups of routines and data compose the entire executable program.

When you are satisfied with the logic of your MACRO-l 1 source pro-
gram, you use the RT-11 editor to create it as a file (like you did in
Chapter 5). You use tabs and spaces to make the program more
readable. When you have finished creating the program as a com-
plete, edited file, you next enter it as input to the MACRO-l 1 lan-
guage processor, which is part of the RT-11 operating system and is
stored on your system volume. The MACRO-l 1 language processor
processes (assembles) the language statements, converting them into
an internal machine language code called object code. This code is
next processed by the system linker, which combines your program
units, making the program suitable for execution. Figure 1 l-2 repre-
sents the development of an executable MACRO-l 1 program.

CREATE - EDIT - ASSEMBLE - LINK - RUN

Figure 1 l-2 Evolution of a MACRO-l 1 Program

The MACRO-l 1 language processor is an assembler that accepts
information in one format (i.e., your source program) and trans-
lates it into another format (i.e., a machine language program).
The assembler interprets and processes the assembly language state-
ments, one at a time, and generates one or more computer instruc-
tions or data items. Since you originally use the editor to create a
MACRO-l 1 program in ASCII format, you must next translate it
into a machine format that the computer can use. The MACRO-l 1
assembler performs this conversion, producing as output a new ver-
sion of the program in object format, called an object module. You
may request the MACRO assembler to produce a listing of the source
program at the same time. The role of the assembler is represented
below in Figure 1 l-3.

1 l-2

Running a MACRO-11 Assembly Language Program

SOURCE

PROGRAM

OBJECT
d ASSEMBLE

MODULE

Figure 1 l-3 Function of a MACRO-l 1 Assembler

During assembly processing, the MACRO-l 1 assembler

0 Accounts for all instructions used within the source pro-
gram and determines their relative positions in computer
memory; it does this by means of a storage location (pro-
gram) counter

0 Keeps track of all user-defined symbols and their respec-
tive values in a symbol table

0 Converts assembly language mnemonics, user-defined sym-
bols, and data values into their respective machine lan-
guage (object code) equivalents

The function of the program counter is to keep track of addresses in The Program
computer memory where instructions and data will be stored. Counter

PDP-11 computer memories are composed of physical storage loca-
tions which can hold numerical data. These locations are numbered
consecutively from 0 up to the highest memory location, which
varies according to the amount of memory acquired with the com-
puter system (see Figure 1 l-4). PDP-11 computers used in an RT-11
system have at least 16,384 bytes (8,192 words); most RT-11 sys-
tems have more than that number.

1 l-3

Running a MACRO-11 Assembly Language Program

The Symbol Table

Figure 1 l-4 PDP-11 Computer Memory

During processing, the assembler converts each program language
statement into numerical data (the object code) and assigns the
data a relative storage location. The system linker will convert the
relative storage locations assigned by the assembler to absolute
storage locations in the computer memory1 . The location’s associ-
ated number is called its address. As the assembler translates and
assigns each statement, it updates the value of the program counter
accordingly.

Since you may not know which locations, or how many locations,
the program needs, you use symbolic names (variables, constants,
and labels) to represent individual locations and their contents. As
the assembler processes the source program, it constructs a symbol
table, which is a compiled list of all the symbolic names and labels
that you have used within the program. The MACRO-l 1 assembler

1 The system linker is discussed in Chapter 12.

1 l-4

Running a MACRO-l 1 Assembly Language Program

defines each symbolic name by assigning an address or data value, as
appropriate, and adds the symbol definition to the symbol table.
After assembly, you can refer to the symbol table, which is printed
at the end of the assembly listing, to find. all symbol definitions.

The third function of the assembler is to convert your MACRO-l 1
source language statements into machine language code (the object
module).

NOTE

The following information will aid your understanding of
the assembly listing used later in this chapter.

Machine language code is numerical data in the form of binary
numbers (numbers composed of only the digits 0 and 1). Binary
numbers are appropriate because the digits 0 and 1 can be easily
manipulated by the two-state electronic logic of the computer.

For example, a typical assembled instruction in PDP-11 computer
memory looks like this:

location location
address contents

OlbOO 1 lOdOOOO
01001 11100101

Since a single instruction requires two (or more) consecutive memory
locations, the instruction is actually put together in memory in the
following manner:

01001 1 1 10 0 10 1 1 10 0 0 0 0 0 01000

Each individual digit of the instruction is called a bit (binary digit).
A single memory location, called a byte, contains 8 bits; two
memory locations, called a PDP-11 word, contain 16 bits.

Machine
Language Code

The byte in the even-numbered memory address is called the low-
order byte and is stored first; the byte in the odd-numbered memory

1 l-5

Running a MACRO-11 Asseinbly Language Program

address is called the high-order byte and is stored next. Both bytes
together form one PDP-1 1 16-bit word (Figure 1 l-5).

PDP-11 Word

01001 1 1 1 0 0 1 0 1 11000000 01000

bit

High-order byte Low-order byte

Figure 1 l-5 PDP-11 Word

The computer works in terms of &bit bytes and 16-bit words of
binary data. However, binary numbers are generally too long and
cumbersome to be used effectively by a programmer. But binary
numbers can be easily represented as octal numbers (numbers com-
posed of digits within the range 0 to 7). Since octal numbers are
closer to the familiar decimal number system and are much more
readable than binary numbers, the programmer more often uses octal
numbers than binary numbers.

Table 1 l-l shows the decimal numbers 0 through 10 and their
respective octal and binary equivalents. Tables and formulas are
available to calculate higher conversions (see the RT-11 Advanced
Programmer’s Guide for one such table).

Table 1 l-l Decimal/Octal/Binary Conversion

Decimal Octal Binary

0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1 000
9 11 1 001

10 12 1 010

1 l-6

Runnina a MACRO-l 1 Assembly Language Program

Thus, you can think of the binary instruction shown earlier in terms
of its octal equivalent as follows (conversion is done from low-order
to high-order byte in groups of three bits):

01001 1 1 10 0 10 1 1 10 0 0 0 0 0 01000

1 6 2 7 0 o= 162700(S)

A MACRO-l 1 assembly listing shows the addresses of memory loca-
tions and their contents as octal numbers. The octal numbers repre-
sent the respective binary machine language code that makes up the
object module.

In Chapter 5 you used the RT-11 editor to create a MACRO-l 1
source program; you then stored it on your storage volume. Since a
source program is in ASCII format, the next step is to use the
MACRO-l 1 assembler to convert it to object code.

Copy the MACRO source program from the storage volume‘back to
the system volume (which is the default volume for input/output
operations).

On your storage volume are two MACRO source programs, the
one you created (SUM.MAC) and the one provided for you
(EXAMP.MAC). Which of these you should copy depends on the
results of the source comparison you performed in Chapter 6. If
the comparison resulted in NO DIFFERENCES ENCOUNTERED,
copy your own program (SUM.MAC) as follows:

Long Command Format

Short Command Format

ASSEMBLING
THE MACRO-l 1

PROGRAM

However, if the FILES ARE DIFFERENT message was generated,
substitute EXAMP.MAC:

11-7

Running a MACRO-l 1 Assembly Language Program

El MACRO

Long Command Format

Short Command Format

+ c: 0 1::’ Y u 0 II. : I!: X A M P + MA i:: 3 1.1 M + MA I:: (RET)

Whichever source file you copied now resides on your system volume
under the name SUM.MAC and is the file that you will process
with the MACRO-l 1 assembler. The command used to assemble
a MACRO source program is the monitor MACRO command.

Use the MACRO command with its /LIST and /CROSSREFERENCE
options to assemble your source program and produce a cross-
referenced assembly listing. The system prompt asks you to supply
the input file name. You can omit typing the .MAC file type since
the MACRO command assumes this file type unless you indicate
otherwise. The system will automatically assign the name SUM.OBJ
to the object module and SUM.LST to the listing file and store both
newly-created files on the system volume.

Long Command Format

Short Command Format

Assembly begins. When it is finished, a message similar to the follow-
ing prints on the terminal printer or screen:

ERRORS IIE:‘l-EC’TE:D : 6

This message indicates the number of lines in which the assembler
detected errors during processing. In this case, the assembler found
six lines in your source program with errors. It helps at this point
to look at the listing produced by the assembler for information.

1 l-8

Running a MACRO-11 Assembly Language Program

Long Command Format

. MACRO/L I ST (RET)
Files? SUM (RET)
ERROF?S DETECTED: 6

Short Command Format

+ MACliO/L:CST SIJM (RET)
ERRORS LSETECTEU : 6

Your listing should look like the following example. An explanation
of this listing follows. You should refer to the listing as you read the
accompanying explanation.

NOTE

It is not necessary that you understand the MACRO-l 1
language or the way this program works to successfully
complete the exercises in this chapter.

1 l-9

Running a MACRO-11 Assembly Language Program

This listing was printed on an 132-column line printer. The first part
of the listing has four logical sections, as follows:

line
number

octal octal statement line
memory instruction
address value(s)

The assembler assigns consecutive decimal line numbers to each line
of the source program, including blank lines and comment lines.
These numbers are used for reference purposes. The next column to
the right shows the relative’ even-numbered octal memory (byte)
addresses of storage locations assigned by the program counter to
each instruction in the program. This program has been assigned
relative memory addresses 0 through 370. The third column (and
possibly fourth and fifth) shows the octal equivalent of the as-
sembled instruction or data value. An apostrophe following an octal
value indicates a relative value that must be modified before it can
be used (the actual value is determined during linking). Finally, the
source program as you’created it appears in the right-hand portion of
the listing.

‘The assembler assigns relative memory addresses to instructions. Actual ad-
dresses are noI determined until the link operation is performed. Linking and
address relocation are discussed in Chapter 12.

1 l-10

Running a MACRO-l 1 Assembly Language Program

For example, look at line 19 of the listing:

19 0000 30 OOh311 4 s r, IdH 1 :*R

The instruction ASL @Rl is stored in relative memory locations 30
and 3 1 as binary data (the comment, ;“8, is ignored):

31 00001100 11001001 30

0 0 6 3 1 1

Some instructions require more than two memory locations, for
example, those at lines 13 and 14. The number of memory locations
required depends upon the operation.

Following the assembled code in the listing is the symbol table, an
alphabetic listing of user-defined symbols and labels in the program
and their respective definitions. Symbols are defined as values. For
example, the symbolic variable name N is defined (in line 7) as
000106(octal) or 70(decimal), an absolute value. Labels are defined
as addresses. The symbolic label FIRST is defined (in line 14) as
00012, a relocatable address (the R following 00012 in the symbol
table indicates that the address will be relocated or modified during
linking.) A row of asterisks next to any symbolic name in the table
indicates that for some reason (possibly a programming error) the
assembler could not define the symbol.

At the very end of the symbol table (where,the . ABS. occurs) is the
program’s size information (or synopsis) in terms of the total number
of octal storage locations it requires (in this case, 372). Following is
the number of errors detected, and the amount of free and used
memory pages (statistics provided by the assembler).

Following the symbol table is the cross reference (CREF) listing. The
CREF listing is optional (as is the assembly listing) but provides you
with useful reference and debugging information, especially if the
program is large. The CREF listing can contain several kinds of tables
of reference information, each beginning on a new page. The default
tables are the three shown here.

Every reference in a CREF table shows the page number of the
listing (in the preceding example, all references are on page l),
followed by the appropriate line number. A number sign following a

1 l-l I

Running a MACRO-l 1 Assembly Language Program

line number indicates that this line is where a label or symbol
definition occurs.

The first CREF table shown here lists alphabetically all user-defined
symbol and label references.

The second CREF table lists alphabetically all macro symbol
references. (Macro symbols are a special feature of the MACRO-l 1
assembly language; they are described shortly.)

The third CREF table lists alphabetically the codes of the errors
detected during assembly. These errors must be corrected before you
can run the program.

Now that you are familiar with the format of an assembly listing, go
back to the beginning of the example listing to determine what this
program should do.

The first two comment lines (preceded by semicolons) indicate that
the program calculates the value of ‘E’, which is the sum of the
inverse of the factorials between 1 and infinity. The algorithm used
in this program is somewhat complicated (this was necessary to keep
the program reasonably short). ‘E’ is calculated one digit at a time by
using a difference function between its actual value and the current
approximation for each new digit. The program forms:

I+(I+(l+. . .+(l+((l+(l/N))/(N- l))/N- 2))/. . ./2)/ 1)

and is 2.11111.. . in the inverse factorial base system, which is the
first sum shown in the program listing.

The statements at lines 1 through 7 define initial states to the
assemblers such as the value of N, and designate the macros that will
be used throughout the program.

Macros, from which the MACRO-l 1 language processor derives its
name, are a very important and useful feature of the MACRO-l 1
assembly language. You can define as a macro any recurring sequence
of coding instructions. by giving the macro a name, you can there-
after call it by name from any other part of the program using a
single language statement.

11-12

Running a MACRO-l 1 Assembly Language Program

In addition to user-defined macros, the RT-11 system provides
system macros th,at your programs can access. System macros are
defined in a special system library file called SYSMACSML (SML
stands for System Macro Library). SYSMAC.SML is part of the
RT-1 I operating system and is stored on the system volume. If you
request a system macro from your source program, the MACRO-l 1
assembler automatically searches SYSMAC.SML for the required
information.

The system macros defined in SYSMAC.SML are calls to certain
services performed by the RT-11 monitor such as terminal handling,
input and output operations, program termination, file capabilities,
and so on. The portion of the monitor that performs or is capable of
getting the necessary program code to perform these services is
always in memory and therefore is called the resident monitor. Thus,
whenever your source program is in memory to be executed, the
resident monitor is also there with its available services.

You communicate the need for a monitor service by issuing a
programmed request cn your source program. A programmed request
consists simply of a macro call to a specific macro defined in
SYSMAC.SML. The macro expands into the appropriate machine
language code, which, during program execution, makes a request to
the resident monitor to supply the desired service.

You specify all programmed requests that you intend to use in your
source program in an .MCALL statement, like that shown at line 3 in
the listing. For example, the programmed request .TTYOUT requests
the monitor to print an ASCII character on the console terminal.
During assembly, the .TTYOUT macro in SYSMAC.SML is expanded
into machine language code. During program execution this code
requests the resident monitor to take the indicated ASCII character
and send it to the console terminal.

Line 12 in the program uses another programmed request, .PRINT,
to print a message on the terminal.

Lines 13 through 15 are initialization instructions: they set initial
values in three of the special registers. Lines 16 through 22 are a
routine that does a multiplication by 10. Lines 23 and 24 are setup
instructions for the division routine of lines 25 through 28. Lines 29
through 35 save the quotient and remainder. Lines 36 through 40
print the digits of E. Lines 43 and 44 count the number of digits.

The statements at lines 47 through 49 reserve a buffer area (a series
of locations in memory) to be used by the program and therefore not
to he assigned to other instructions. The statement at line 51

11-13

Running a MACRO-l I Assembly Language Program

provides the data for printing the ASCII text message THE VALUE
OF E IS: 2.

This program, however, contains errors. The assembler discovered six
lines with errors that prevent the program from assembling properly.
The assembler flags (points out) errors by printing a code letter in
the assembly listing or on the terminal if no listing is requested.’

The first error occurs at line 12 and is an M error. This means a label
was defined more than once. You can refer to a label any number of
times, but you may define it only once. By looking at the CREF user
symbol table, you can see that the label is defined at line 12 and
again at line 47; one of these definitions is wrong. Examination of
the program logic reveals that the definition at line 12 is correct.
Before deciding how to change line 47, though, check the other
errors to see if one of them indicates what should be done. In fact,
the next error encountered (line 15) shows what is wrong. A U error
identifies an undefined symbol. The label A is referenced in line 15,
but is never defined within the program. It should logically be
defined at line 47. Therefore, line 47 should be changed to read:

A: . REPT \I+ 1

Thus, this one change eliminates three errors flagged by the
assembler; those at lines 12, 15, and 47.

The next error occurs at line 32. Actually, the assembler flagged two
errors here. An A error indicates an addressing problem and an R
error indicates a register error (illegal use of a register, a special
PDP-11 storage feature). If you look at the language statement in
line 32, you can see that the ADD operator is followed by one
operand. However, ADD is an instruction that requires two operands
(two values to be added together) separated by a comma. This
statement simply contains a typing error which can be corrected by
inserting a comma between the R2 and the -2(Rl). Thus, changing
the line as follows both corrects the addressing problem and
eliminates the illegal register expression:

4DD P2 ,-2(Hll

‘Refer to the RT-11 System Message Manual for greater detail on any system
messages printed during normal system use.

11-14

Running a MACRO-l I Assembly Language Program

At line 41 is another undefined symbol, the macro symbol .TTYON.
Since the program designated the macro symbol .TTYOUT in line 3,
this error indicates a misspelling. Correct line 41 to read:

.TTYOUl’

Finally, a D error occurs in line 54. This indicates that reference was
made to a symbol that is defined more than once. This error has
alrady been eliminated as a result of the correction made to line 47.

Thus, by changing the three lines indicated, you can correct all the
errors flagged during assembly. So the next step is to edit the
appropriate lines in the source program. If necessary, review the
editing commands in Chapter 5, and then edit the file SUM.MAC on
your system volume so that the three lines indicated are error-free.
Do not rename the file. When you are ready, reassemble the program
using the MACRO command and obtain a new object module and a
new listing. This time the program should assemble without error. If
errors occur, you have not edited the program correctly. Compare
listings and try to correct your errors or go back to the beginning of
this chapter and repeat the demonstration.

The object module produced by the MACRO command may in itself
be incomplete. It may need to be joined with other object modules
or library files to form a complete functioning program1 , since all
required object modules must be joined before the program can
work.

LINKING OBJECT
MODULES

TOGETHER

Thus you must next link the SUM object module with any other
object modules it requires. However, the only file used by this
program was the macro library file SYSMAC.SML, and it was used
during assembly. So in this case, you do not need to join the SUM
object module with any other modules. However, you must still link
the file. The link operation, in addition to joining object modules
together, also assigns absolute memory addresses to the relative
addresses calculated by the MACRO-l 1 assembler. Since the memory
addresses of one object module must be relocated to accommodate
addresses used in another object module, the link operation serves to
resolve all address changes. The result of the link is a memory image

‘For more information on linking files and using library files, see Chapters 12
and 13 respectively.

11-15

Running a MACRO-11 Assembly Language Program

I LINK

load module, with all module links resolved and all absolute memory
addresses and storage information assigned (Figure 1 l-6). The
memory image module, then, is actually a picture of what computer
memory looks like just prior to program execution.

OTHER

OBJECTS

.

OBJECT
LINK

LOAD
MODULE - - MODULE

Figure 1 l-6 The Link Operation

To link the object modules, use the LINK command. The system
prompts you to enter the names of the input object modules to be
linked together. You can omit typing the .OBJ file type in the
command line since the LINK command assumes this file type for
input. After you have entered the input information, the system
begins linking the object module. You do not have to specify an
output file, since the system automatically assigns the file name of
the first input file and a file type of .SAV to the output file.

Long Command Format

Short Command Format

Any messages printed inform you of error conditions discovered
during the link operation (for example, if you fail to specify all the
necessary input object modules that are needed). However, assuming
you edited your source program correctly and that it assembled
without error, it should also now link without error.

11-16

Running a MACRO-l 1 Assembly Language Program

A load module is one that you can run on the system. Unless your
program contains logic errors that prevent it from running properly
(errors which the system cannot always detect), running the .SAV
version of your program should produce the results you intended.
However, if logic errors exist within your program, running the
program will produce either erroneous results or none at all. If this is
the case, you must study the source program, rework it, reedit it,
then perform the assembly and link operations again.

If your MACRO program is error-free, running the .SAV version
should produce the expected results. In this demonstration, running
the SUMSAV file should produce a value on the terminal that is the
constant E (2 followed by 70 digits).

To execute the MACRO demonstration program, use the monitor
RUN command. You can omit typing the .SAV file type since the
RUN command assumes this file type. Type the following and note
the results printed on the terminal:

Long and Short Command Format

THE ‘JAL.UE 0F E’ I!;:
2. !5/606/606237.2301314.065~~5/1.~04402755~~5025. 71477737352744745405502.544

You can see that something is wrong. Slashes and periods appear in
the result and indicate that an error still exists somewhere in the
program.

Programming errors, called “bugs”, can be very difficult to find and
fix. A debugging aid is described in Chapter 14. You will use it to
correct the program’s final error and to rerun the program. For now,
however, the error will be pointed out and explained.

Look at line 40 in the assembly listing. Notice that the line’s
instruction converts a digit into the appropriate ASCII code before
printing it on the terminal. To do this, the constant 10 is added back
into the value of the digit already stored in memory, and then the
value is converted (via ‘0, which is the ASCII code for 0) to an ASCII
code which can be printed. However, unless you explicitly designate
a value as decimal, the assembler assumes all values used in the
program are octal. Therefore, it interprets the constant as lO(octal),
or 8(decimal), and adds the wrong value every time. The conversion
consequently causes the codes of the ASCII characters / and . to be
used as results in some cases. The codes of other digits, while
representing numeric values, are also off by two. To correct this

RUNNING THE
MACRO-l 1
PROGRAM

11-17

Running a MACRO-l I Assembly Language Program

COMBINING
OPERATIONS

1 EXECUTE)

error, you must insert a period after the 10 in line 40. The period
instructs the assembler to accept the constant value 10 as a decimal
value.

To produce program results, you first assembled the MACRO source
program (SUM.MAC), then linked it, then ran the resulting .SAV file
(SUM.SAV). You can combine these three operations using one
monitor command, the EXECUTE command. This command in-
structs the system to select the appropriate language processor
(which you indicate using an option), then process, link, and run the
program. For example, to combine the assemble-link-run operations
you performed in this chapter, you use the following command:

Long Command Format

Short Command Format

Notice how you use the /LIST and /CROSSREFERENCE options
following the file name to request both an assembly and a
cross-referenced listing.

SUMMARY:
COMMANDS TO
RUN MACRO-l 1
PROGRAMS

EXECUTE
Combine the assemble-link-run operations into one command.

EXECUTE file/MACRO
Combine the process-link-run operations into one command and
specify the input file to be a MACRO file.

EXECUTE/CROSSREFERENCE
Produce a cross-referenced listing file.

EXECUTE/LIST
Produce a listing file of the source program.

LINK
Link individual object modules together to form a complete
program and produce a load module.

11-18

Running a MACRO-I 1 Assembly Language Program

MACRO
Assemble the MACRO-l 1 source program and produce an
object module.

MACRO/CROSSREFERENCE
Assemble the MACRO-l 1 source program and produce both an
object module and a cross-referenced listing file.

MACRO/LIST
Assemble the MACRO-l 1 source program and produce both a
listing on the line printer and an object module.

RUN
Run the indicated load module.

Before continuing further, you should perform the necessary file
maintenance operations. Obtain a directory of all files on your
system volume that have the name SUM, regardless of file type; these
files were created as a result of the exercises in this chapter:

Long and Short Command Format

The fact that you have corrected errors in the source file of
SUM.MAC makes the version of that file on your storage volume
obsolete. Thus, transfer the updated copy from your system volume
back to VOL: replacing the copy of SUM.MAC on the storage
volume with the new version:

Long Command Format

*COPY (RET)
From? SlJM+MAC (RET)
To ? uoL:SUM,MAC (RET)

FILE
MAINTENANCE

Short Command Format

,COPY SlJM.MAC UOL:SUM+MAC (RET)

11-19

Running a MACRO-II Assembly Language Program

Next, similarly transfer SUM.SAV to your storage volume. This
allows you to rerun the MACRO program without reassembling and
relinking the source.

Long Command Format

*COPY (RET)
From? SUM,SAU (RET)
To ? UOL:SUM,SAV (RET)

Short Command Format

+ c: 0 1::’ Y s 1.1 M + S fi V l,.J il I... : S 1.1 il + S n !$ (RET)

Once you have transferred to your storage volume the files you want
saved, delete from the system volume those you no longer need (i.e.,
all the SUM files):

Long Command Format

+ 11 E: I.- ii: ‘r’ I: .I iv i:) (2 U Iii: I:; ‘f (RET)
I- Ii. I e “i ‘I SUM * t (RET)

Short Command Format

. D Ii.. I... 1.1: ‘r’ ii.: / h! [:I ca 1.1 Ef: Ii Y S !.J M I :# (RET)

Finally, obtain an up-to-date directory listing of your storage volume
so that you can see its current status:

Long and Short Command Formats

This completes the MACRO demonstration. Continue now to
Chapter 12 to learn more about the link operation.

1 I-20

Running a MACRO-I I Assembly Language Program

Eckhouse, Richard H. Jr., Minicomputer Systems: Organization and Pro-
gramming (PDP-11). Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975.

A detailed guide to programming concepts, operations, and applications
involving minicomputers, with emphasis on the PDP-11.

PDP-II MACRO-11 Language Reference Manual (AA-5075A-TC). Maynard,
Mass.: Digital Equipment Corporation, 1977.

A reference manual for the PDP-11 programmer using the MACRO-l 1
assembly language.

PDP-I1 Peripherals Handbook. Maynard, Mass.: Digital Equipment Corporation,
1976.

A technical description of the PDP-11 peripheral devices, including
necessary programming information.

PDP-I1 Processor Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A technical description of the various PDP-11 processors, including
complete information concerning the PDP-11 instruction set.

PDP-11 Programming Card. Maynard, Mass.: Digital Equipment Corporation,
1975.

A pocket-sized folding card summary of PDP-11 machine instructions used
by the various PDP-11 assembly language processors.

PDP-11 Software Handbook. Maynard, Mass.: Digital Equipment Corporation,
1975.

A general overview and introduction to available PDP-11 software,
operation systems, and language processors. See especially Section I,
Chapter 3, Section II, Chapter 2; and Section III, Chapter 1.

RT-I1 Advanced Programmer’s Guide (DEC-11-ORAPA-A-D). Maynard, Mass.:
Digital Equipment Corporation, 1977.

An RT-11 system-specific programming manual for the MACRO-l 1
programmer.

RT-11 System User’s Guide (DEC-1 l-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

REFERENCES

A guide to the use of the RT-11 operating system. See Chapters 4 and 10.

11-21

CHAPTER 12

LINKING OBJECT PROGRAMS

Programs that you write in the MACRO-l 1 and FORTRAN IV pro-
gramming languages require additional processing after their con-
version to object format. Before you can run them on the system,
you must link them. The link operation:

0 Joins together the object modules that use a symbol with
the object module that defines it.

0 Relocates individual object modules as necessary and
assigns absolute (permanent) memory addresses; if neces-
sary, it also defines an overlay structure.

0 Produces a load module and an optional load map (Fig-
ure 12-l).

OBJECT LOAD
MODULE(S) c LINK * MODULE

LOAD MAP
(OPTIONAL)

A

Figure 12-l Link Functions

The advantage of program linking is that is allows you to use a
modular approach to your programming. You can create an entire
program as a series of smaller, independent subprograms. One of
these you write as the main, or controlling, program, and the rest
as subordinate subprograms and subroutines. You use the appropri-
ate language processor to translate each part of the program into an
object module. Then you use the linker to join all the object modules
together into a complete, functioning unit.

12-1

Linking Object Programs

RESOLVING
SYMBOLIC AND
LIBRARY
REFERENCES

Modular programming facilitates program creation and debugging.
For example, several programmers can simultaneously work on a
single program, each creating a portion of it. The individual portions,
or subprograms, can be processed and linked with test programs and
debugged for logic errors separately. Then all the object modules can
be joined together to form a complete program that can be tested as
a whole. If errors occur at this stage, only those object modules in
error need be debugged and changed.

In addition, modular programming allows you to make use of library
files. These are files that contain already-written and debugged sub-
programs and subroutines. Since you join library files with your
program at link-time, their routines can be used by your program as
needed.

The linker reads through all the object modules that you indicate as
input to the LINK command. It gathers and evaluates from them
information provided by the language processor that is necessary for
program linking. For each input module, this information includes
the object code, information needed for relocation, the relative
address of the first instruction, the global symbols used, and the
absolue length of each program and program section.

One of the linker’s first functions is to resolve all user-defined
symbolic references and library references in the joined routines.
There are actually two types of user-defined symbols - internal
symbols and global symbols.

Internal symbols are limited to the object module in which they
appear; thus, they cannot be referenced from any other module or
defined in any other module. A program containing only internal
symbolic references (such as are found in the demonstration program
in Chapter 11) is complete itself and does not need to be joined with
any other object programs at link-time. Thus, internal symbols are
not resolved at link-time because they have already been resolved by
the language processor.

Global symbols, on the other hand, are the key to modular program-
ming. Global symbols provide the communication between object
modules. Such symbols may be symbolic labels to instructions,
symbolic labels to data, or symbols that are equated to a value or
constant. Global symbols are defined in one object module and
referenced from other separately-assembled or compiled object
modules. Such symbols must be designated as global in the source
code. The following segment of MACRO-l 1 assembly language code
illustrates the use of global symbols.

12-2

Linking Object Programs

While internal symbolic references, such as LOCAL in the example,
can be resolved by the assembler or compiler within the single pro-
gram unit, global references, such as C, cannot. They require other
object modules. During translation, the language processor notes
in the object module those symbols that are global. During linking,
the linker keeps track of the global references and definitions found
in all the object modules; and as linking proceeds, makes the appro-
priate correlations and modifies instructions or data as necessary.
After linking, the linker prints on the terminal a list of all symbolic
references that were not resolved (undefined globals), either due to a
programming error or because all necessary object modules were not
included in the link.

References to library files also involve the use of global symbols. You
access the routines in a library by naming a routine as a global sym-
bol in the source code of your program. You then link your program
with the appropriate library tile and the linker resolves the library
references just as it does any global symbol. Library usage is dis-
cussed in greater detail in Chapter 13.

A second important function of the linker is to “fix” the relative
memory addresses so that they are abso1ute.l The object module
represents translated source instructions that have been assigned
memory addresses relative to a base address of 0.

Look back at the assembly listing in Chapter Il. Note the second
column; these addresses are relative to a base address of 0. Thus the
first instruction is assembled at relative address 0, the second at

PROGRAM
RELOCATION

AND ADDRESS
ASSIGNMENT

‘FORTRAN and BASIC users who have not performed the demonstration in
Chapter 11, may wish to read the section in that chapter entitled “The
MACRO-l 1 Language Processor.” That section explains the concept of con-
verting and storing instructions in computer memory.

12-3

Linking Object Programs

relative address 2, and so on. A program cannot actually be stored
and run in memory using locations relative to address 0, however,
because system information is already stored in some of these loca-
tions. For example, the RT-11 operating system uses byte addresses
40 through 57 to store information about the program currently
executing. In addition, the RT-11 operating system uses locations in
the upper range of memory for storing the resident monitor. Thus,
the linker must assign memory addresses to your program that are
not already in use or that will not be used during program execution.
It must, therefore, assign absolute memory addresses to the relative
addresses assigned by the language processor.

The linker normally starts assigning memory addresses at ad-
dress 1000, since this begins a large section of free memory space.
So, to obtain the actual addresses used for program loading, you
must add the relocation constant 1000 to each relative address
shown in the assembly listing.

A conflict arises when several individually-processed object modules
are linked together. The linker cannot assign memory addresses
starting at 1000 to every module, since address assignments of one
would then override those of another. However, part of the informa-
tion that the language processor calculates and passes to the linker
is the size of each program section in each module. So the linker
simply adds this size into the relocation constant for each module
and assigns higher addresses, appropriately modifying all instructions
and data as necessary to account for the relocation of each individual
module. Figure 12-2 illustrates the relocation that must occur to
accommodate object modules linked together.’

Absolute and
Relocatable
Program Sections

Just as global symbols allow you to create an entire program using
several individual object modules, program sections allow you to
create an object module as a series of individual sections. The advan-
tages gained through the sectioning of programs relate primarily to
control of memory allocation, program modularity, and more ef-
fective partitioning of memory. The linker processes the program
section information in the object modules as directions on how to
create the executable program image.

The FORTRAN IV and MACRO-l 1 language processors insert
program sectioning information into the object module. The
FORTRAN IV language processor does this automatically when
program sectioning is implied by the source language statements in a
user program. For example, FUNCTION, SUBROUTINE, and

1 A load map for this relocation example is shown later in the chapter.

12-4

Linking Object Programs

372 (octal)
bytes

0

Eli

170 (octal)
SUBTWO bytes

166

0

1000

1370

1372

1432

1434

1622

1624

RESERVED

PROG

SUBONE

Relative addresses of three
assembled/compiled programs

Absolute addresses of three
linked programs

SUBTWO

Figure 12-2 Object Module Relocation

COMMON statements result in the production of program section
directives. In MACRO-l 1 assembly language, you are responsible for
explicitly directing the assembler to output program section informa-
tion for the linker. You do this via the .PSECT (or .CSECT and
.ASECT) MACRO-l 1 assembly language statement.

Some of the basic functions associated with program sections are:

1. Instructions or data can be placed in absolute locations at
memory. The named absolute program section (. ABS.)
allows you to instruct the linker on exactly where to place
program code or data. Declaring a section as part of the
absolute program section instructs the assembler or com-
piler to use the internal value of the program counter as
the physical memory address to be assigned after linking.
This section is processed relative to absolute memory
address 0 and is not relocated at link time.

2. Named relocatable program sections are used to group data
or instructions into logical portions of memory. The
FORTRAN COMMON statement invokes this construct to
allow access to named data areas from many separate
routines. Declaring a section as part of a named relocatable
program section causes the section to be processed at re-
locatable address 0. Such sections are relocated by the
linker.

12-5

Linking Object Programs

3. A program section exists known as the blank program sec-
tion. If you do not care to have exact control over where a
portion (section) of a program will be placed in memory,
use the blank program section. The linker treats this
section as relocatable and the linker decides where to place
it in the loadable memory image. The blank program sec-
tion is the default for a MACRO-l 1 source program and
remains in effect until an explicit program section is identi-
fied (the program example in Chapter 11 used the blank
program section).

4. A program section can be identified as an instruction
section. The linker, using this information, can provide
automatic loading of declared overlay code when needed
by the executing program (this will be discussed in more
detail.

The language processor, then, actually maintains several program
counters - one for the absolute program section, one for the un-
named relocatable program section, and as many as needed (maxi-
mum is 254) for named relocatable program sections. The assembled
example that follows helps to explain this concept.

Since the system does not know at assembly (or compile) time in
what actual memory locations each relocatable section goes, all refer-
ences between sections (see line 18) are relative to the base of the
section. This information is then passed to the linker so that it can
make the appropriate adjustments at link time.

12-6

Linking Object Programs

The RT-1 1 linker is capable also of handling the special relocation
and address assignments that are required whenever you indicate
that an overlay structure is needed. An overlay structure is necessary
when you write a program that is too large to fit in the available
memory of your system. You write the program in discrete parts
(some programming restrictions must be observed) so that your pro-
gram can subsequently be executed in parts. One segment of the
program is called the root segment and must remain in memory at
all times. The root segment contains the necessary information for
use by the other segments of the program, called overlay segments.
Overlay segments are stored on storage volumes and brought into
memory as needed. The purpose of the overlay structure is for parts
of the program to share the available memory in such a way that
when one part is complete, it is overlaid (and therefore erased) by
another.

You indicate how to plan to overlay your program by using the
/PROMPT option in the LINK command line. The linker then
creates a load module that contains the, necessary information for
loading the appropriate segments as needed during execution. The
RT-11 System User’s Guide explains the overlay feature in more
detail in Chapter 11. You need not specify an overlay structure for
the examples demonstrated in this chapter.

The load module is the result of the linking processes described thus
far; joining object modules, resolving symbolic and library references,
relocating object modules, assigning absolute addresses, and creating
an overlay structure if required. The load map is essentially a synop-
sis of the load module - that is, what memory looks like when the
program is loaded and ready to be executed.

In Chapters 9 and 11, you produced load modules but you did not
request load maps. You obtain a load map by using the /MAP option
with the LINK (or EXECUTE) command. At this time, relink the
FORTRAN or MACRO object module that you stored on VOL: and
use the /MAP option to produce a load map on the line printer.’ The
load map is created as a file on the default storage volume and has
the name of the first input module and a file type of .MAP.

The Overlay
Feature

PRODUCING A
LOAD MODULE

AND A LOAD
MAP

El /MAP

‘FORTRAN users who followed the special instructions in Appendix B for
loading the language volume should check that this volume is loaded in device
unit 0.

12-7

Linking Object Programs

Long Command Format

(Macro Object Module)

.LINK (RET)
Files? UOL:SUM/t.lAP~

(FORTRAN object module)

Short Command Format

(MACRO object module)

. I... :I: N I(u II 1.. : S u M / M A 1::’ @

(FORTRAN object module)

+LINK UOL:GRAF’H/MAP(RET)

Now list the .MAP file on either the line printer or terminal, choosing
the appropriate command:

Long Command Format

(Line printer) (Terminal)

* I... :I: N ii; ./ M A 1::’ (RET) .LINI</MAP:‘T”1‘: (RET)
F’ i 1. e 5 7 U 0 L : SUM (RET) Files? VOL: SUM (RET)

Short Command Format

(Line printer) (Terminal)

For your convenience, both maps are provided here. In addition, a
load map of the relocation example used in Figure 12-2 is also
provided.

12-8

Linking Object Programs

KT-11 LINK 1.. o a d M i3 F I’o.,r+ 05....Ju.l~..~77 13:12:31.
SUM .SAV r1t1e: SUM.MA Ident. :

Section Addr Srze Global Value I3 1. ,.I i-1 ‘3 I v a 1 1.1 t? ti 1 0 b d 1 Value

. AHS. 000000 001000 (RWllrGHL,AXSroVR)
001000 000.372 (liWrIrLCL.RELrC:oN)

‘Transfer address = 001000. Hi9h llinlt. .- 001.372 =: 33%. words

RT-11 LINK Load Ma!= Tue OCJ-Jul-77 13:18:23
GRAPH .SAV Title: *MAIN. Ident: FORYO2

Section Addr Size Global Vallle Glohal VJlLle Glohal

. ARS. 000000 001000 (KW.I,GHL.AHS,OVR)
$USRSW 000000 5KFZA1 000000 $HK[lWR
*VIR 000000 .VOi4A 000001 ONLCHN
5sYsv5 000007 BWASIZ 000131 BLRECL
OTHACE 004737

OTSSI 001000 017074 (HW,I,LCL,REL,CON)
$$OTSI 001000 3CVTIF 001000 5CV.rIC
BCVTI!J 001014 CC15 001026 CIiI5
5IC 001026 5IU 001026 CFI5
5IR 001042 EXP 001126 MlJF5FS
MUFBMS 001472 MUFOIS 001502 OMULF
MUFBSS 001522 5MLR 001522 sew
DIFBPS 002226 DIF$flS 002232 DIFIIS
BDIVF 002250 KlIFbSS 002262 5IlVR
ADF$IS 002550 AElFBPS 002556 SUFBFS
SUFBMS 002566 ADFBMS 002600 SUFBIS
5AElDF 002616 BSUBF 002632 SUFCSS
BSHR 001644 AIlFBSS 002650 Q A I:! R
ADEI5 002664 OOTI 003336 35OTI

Value

000000
000006
000210

001014
001026
001042
001466
001510
002032
002242
002262
002562
002610
002644
002650
003340

55SET 005046 IDINT 005342 INT 005342
MAX0 009370 MINO 009414 ISN5 005440
OISNTR 005444 LSNB 005460
AU I 3 S S 005620 ADIOSA 005624
AIlIOlS 002634 AllIdIA 005640
ALl.r.bMS 005650 AIllIMA 005654
SUI5SS 009664 SU.[BSA 005670
SUIBIS 005700 SUI$IA 005704
SUIBMS 009714 SIJIOHA 005720
ICI5S 005730 ICIOM 005’734
lICl5A 005742 UCIBS 005746
DC I 5 F' 009756 IlCIIA 009760
MoFBSM 005776 MOF5SF 006006
I.. El15 006014 Lcir5 006022
I-NE% 006034 LLT5 006036
ANUB 006046 EGV5 006054
‘TSLBS 006072 TSLBM 006076
w-w 006110 RE- I$L 006116
RET51 006130 RE r* 006132
MOLOSS 006166 MOIBSM 006172
MOICIS 006202 MOL5IS 006202
MOI5IM 006206 MOIBlA 006212
MOI5MM 0 0 6 :.! :! 2 MOI5MA 006226
MoI$OM OOh236 NOl5OA 006242
MOI51M 0062?54 MOI51A 006262
NCXl5S 006274 NrjF$S 006274
NGF5M 006306 NGDBF 0 0 6 3 2 2
NOll$A 006326 NCiF5A 006326
CAL5 006340 MOI$IF 006370
(.JO.[‘liF’,::’ 006400 MOIIMF 006404

BLSNTR 005464
AIlIBSM 005630
A5DTBIM 009644
ADI$MM 005660
SUI$SM 005674
SUI5IM 0 0 .“j 7 10
SUI5MM 005724
.KCI$F 005740
S~CI5M 009752
MOFOSS 003764
LLLE$ 006012
LGEO 006024
IOR 006042
XORB 006056
TSLOI 006102
F;E’T$F 0061.:!2
MOICSS 006:166

006176
006202
006216
006232

MOIBSA
REL5
MOI5MS
MOl$OS
MOI5iS
EXI?
NG135M
NGF5F
CA15
MOIBSF
MOI$FS

006246
006270
006306
006322
006332
006372
006414

MC3 [$F”M 00642”’ MoI5F’A 006430 MOI%OF 006436
MOl%‘lP 006444 CMI5SS 006494 CM'LOSI 006460
CtlJ.$SM 006464 CMI$IS 006470 CMIBII 006474
CMI$.LM 006500 CfllBMS 006SO4 CMI$Ml 006510
CMI$PlM 006914 NMI5lM 006520 NMIBiI 006532
HLE5 006542 BE:05 006544 HGT5 006552
fiGE5 006554 HRA5 OOhS56 HNE5 006562
BLT5 006564 MOF$RS 006574 MOFBRM 006602
MOF5RA 006612 MOFBRF 006616 MOt~5tlS 006622
MOFBFS 006634 llOF5MM 006640 MOFBMA 006652
MOFBMF
“(,F’$,:.F
NOL.BNS
MoLBSF
MOL$Ftl
MOL$IM
S’l h;BL
MOI5Fi‘S
MOI5R;~
55oTIs

006660 MOF5FM
006676 MOLOSM
006712 NOLOMM
006732 MOLSFP
006754 ilOL5FS
006774 MOLBIA
007020 STK51
007040 MOL%F?S
007050 flOI5HA
007060 SAL5IM

006666
006’702
006722
006740
006762
007002
0070:?4
007040
007052
007100

MOFIFA
MOL5SA
MOLBMA
tlOL5MF
MOLBFA
HOL.5IF
STti$F
MOI%KM
5oTIs
SALBSM

006672
006706
006 726
006744
006766
007010
007030
007044
007056
007202

SVLOIM 007206 SVLBSM 007210 SAL.BMM 007216
SVL5MM 007222 BCVTFH 007226 BCVTFI 007226
BCVTCH 007242 5cvTcI 007242 5cwm 007242
5CVTIlI 007242 CIC5 007254 CID5 007154
CLC5 007254 CLD5 007254 5111 007254
CIF5 007264 CLF5 007264 WI 007264
CIL5 007376 CL15 007402 TVL5 007404

12-9

Linking Object Programs

Section Addr Size Global VZClcle Global Value Global va1ms

‘I>‘I’VL. 007404 Ivl:$
run5 007420 $TVll

Sl’Vl1 0074°C . 1 .rvF-+
00744' OIVI 00744:!
0076.10 SC Nrl 0076.!:!

.[FWS 00766:’ 0 1 F w
li c IHK E R 010000 5 IIlEXl
cr11.5 OlOOY4 ?; !$ '1 ,:. :y;
$ y; T ,.' 010176 FCKlq.
s A I.. $ I I' 010346 E; A 1. 5 SF
!.i v L 5 s (1 0 I 0 3 :, 6 YAL.OMF
BERRl R 0.103~4 BEYI-<KS
tiAVFlG5 0 1 4 12 6 'I' It417 I I B
acit: TI)L 0 1 4 5 16 ar:nt 11.
w3.1 rue 014736 SWAJ .I
‘sTN.lrI% 0 1 5 3 I.? 6 4aCI osf:
ByiF 016616 5LIIJMF’L.

01 6$F 030074 000050 (FIW, u I GF(l.. I REL, OUR,
SYST.1 cx'O144 000?12 (RW I I I L.L:l... , REL. I CON 1

LEN 020144 NEWAl
IJSER$I 0203:';ls 000000 (t?W I 1 , LCL I PiEI... I CI.lN)

00 74 I. :!
007420
007434

007666
0.100:!4
010170
01.020:'
0 1 0 3 5 0
OIO3Jc14
OJ.0501
014304
0 I 4 7 0 ?
0 1 :i :I. 6r
01ci44;

020162

<%l VF
r v (3 5
97VI1
CNDY.
BE. rif\
I FW$I
*ml..
s w3
sE.x.r I
SVL el:F

00741i!
00/4:'c>
007434
007516
007h40

BCOOE

(ITS30

SYS$Q
BI.,h’I AF
OTSBIl
OTSBS

SYSBS

OIIATA
IJSEFtBIl
.5%%B.

020356 001316

021674 001Ol.h

072712 000000
ox!712 000106
023010 00000s
023026 OOOOO:!

023030 000004

023034 000536
023572 000000
iJz3572 000000

(~W,TrI~CLrRELrCON)
():!I:'34 I’lllS~Iti 0% 1 40:!

I%01 SC) 02 1. 6 7 4 liOt'1: N 021674
~RW,IrLCLrrlEL.tCON!
(IRW, I:! I I-CL. 9 F(El. , CON j
(RW I IT I I CL r REL I CON)
(RW I D I ILCL I RE:L I CON)

BAOTS 023026
~F(W.DrLC:L,FiE’L.rC:ON~

‘bSYSL.B 0?3030 BL OCl\ 0 ‘3 0 .J Z.’ JCRASH 023033
(flW,D.LC:L,IIEL,CGN)
(RW,DrLCL rKEL,CON)
(RW,~I~GHL.,F,‘EL~O’JR)

Transfer address := 020356, High lln,lt = 0'3572 = 5 0 5 3 * words

RT-11 LINK , u.ed Mar- r,.,(.> o:i- ..II~I -77 13:53:io
LNEXPl .SAV .I i t 1. e : *MAIN* Icle~lt:

Section Addr SIZE? G1,obaI V;$l\JP Ii’Inbal v < * I 1.1 I (ilObZ31 v d I c J e

. AHS. 000000 001000 (RW,I.GBL,ANS,OVII)
001.000 000034 (riWrllLCL.IREL,CnN)

Transfer address .= 00000%. Hldh l.,r,:it ::.: i)O1034 770. Wol~rJs

The second line has the name and file type of the load module
created. Next, the absolute section and each named and unnamed
section are listed under the SECTION column. To the right are
abbreviated codes designating whether the section contains Instruc-
tions or Data, is Read/Write or Read Only, is a Local or Global
section, is Relocatable or Absolute, is Concatenated or Overlaid.
Below this falls a listing of all the global symbols (GLOBAL) and
their values (VALUE). Finally, at the end of the map is the transfer
address where the program actually starts when executed, followed
by the high limit - the total number of bytes used by all the in-
dividual program sections.

Look first at the MACRO load map. The default absolute section
starts at absolute location 0; its size is 1000 bytes. Thus, it extends
from absolute memory location 0 through absolute memory location
777. The unnamed program section (there were no named program
sections in this program) starts at absolute 1000; its size is 372 bytes.
Thus it extends from absolute location 1000 to absolute location
1372. The high limit of this program (total bytes) is therefore 1372.
Since this program is not linked to any other object modules, there
are no global symbols and the rest of the map is blank.

12-10

Linking Object Programs

Look now at the FORTRAN load map. remembering that it reflects
the appropriate expansions into machine language code provided by
the FORTRAN compiler. Again the absolute section extends from
absolute 0 through absolute 777. Globals listed in the absolute sec-
tion show the global variable names that the program uses as con-
stants throughout the program.

The unnamed relocatable program section begins at absolute loca-
tion 1000. Some of the named relocatable sections declared are
OTSP, SYSI, and $CODE. Global symbols and their respective
addresses appear to the right of all sections. The total number of
bytes used is 22534.

The third load map again shows the absolute section, from absolute
memory location 0 through 777. Next, the entry points of the
modules (PROG, SUBONE and SUBTWO) are shown; 1000, 1372,
and 1434. The transfer address is 1000 and the total number of bytes
used is 1624, followed by that value in decimal words.

Load maps are most helpful when used in debugging to locate and
correct assembly language programming errors. They are not
generally obtained or used for FORTRAN programs, except to
determine program size. In Chapter 13 you will see how a load map
is used to debug the one remaining error in the MACRO demonstra-
tion program.

LINK
Link individual object modules together to form a complete
program and to produce a load module.

LINK/MAP
Link individual object modules and produce a load map show-
ing all address assignments made during linking.

NOTE

FORTRAN users who followed the special instructions in
Appendix B to load the language volume should now stop
the system, unload that volume, load the main system
volume, and rebootstrap the system before going on to
Chapter 13.

R T-l 1 System User’s Guide (DEC-1 1 -ORGDA-A-D). Maynard, Mass. : Digital
Equipment Corporation, 1977.

SUMMARY:
COMMANDS FOR

LINKING
PROGRAMS

REFERENCE

A guide to the use of the RT-11 operating system. See Chapter 11.

12-11

CHAPTER 13

CONSTRUCTING LIBRARY FILES

A library is a specially constructed file consisting of one or more
programming routines. Generally, these routines provide services that
you are apt to need repeatedly or services that are related and so
have been gathered together for ease in use and storage. You use the
routines in a library by joining the library file with your source
program. Usually this occurs at link-time: but in the case of assembly
language programs, it may also occur at assembly-time.

The RT-11 operating system provides several library files; SYSLIB
and VTLIB for example. These libraries supply the monitor services,
input and output routines, conversion routines, and other program-
ming services that user programs may need. You can create other
library files yourself. Thus you can construct libraries that contain
routines specific to your programming needs or to the combined
needs of those using your RT-11 system.

There are two kinds of library files - macro libraries and object
libraries.

Macro libraries, such as SYSMAC.SML, are used by MACRO-l 1
source programs at assembly-time and consist entirely of macros.
A macro is described in Chapter 11 as a recurring sequence of coding
instructions which, when defined in a .MACRO statement, can then
be called and used anywhere in your program. A macro library is
merely several macro definitions gathered together into a single file.
To use the macros in a macro library, you simply name those macros
you plan to use in an .MCALL statement. When the assembler
encounters the .MCALL statement during processing, it searches the
appropriate macro library (SYSMAC.SML is default) for the detini-
tions. It takes the definitions from the library and inserts them in a
special table called the macro symbol table where they become avail-
able for use during assembly.

KINDS OF
LIBRARY FILES

Macro Libraries

13-1

Constructing Library Files

Object Libraries Object libraries, such as SYSLIB, are used by assembled MACRO-l 1
source programs and/or by compiled FORTRAN IV source programs
at link-time. These libraries consist of object modules that contain
global routines; such routines have been defined with global entry
points and then named as global symbols in the source program. Dur-
ing the link operation, the linker searches the object libraries to
determine if they provide definitions for any undefined globals. If
the linker finds definitions, it takes those object modules containing
the definition from the library and includes them in the link.

A special table, called the global symbol table, lists each global in a
given object library. You can print this list on the terminal or the line
printer and thus keep track of an object library’s current contents.

CREATING AND You create a library file by combining several macro routines, or
MAINTAINING A several object modules, into a single larger file using the monitor
LIBRARY FILE LIBRARY command.

To build a macro library, first use the editor to create an ASCII
text file that contains all the macro definitions. Then process this
file using the LIBRARY command in combination with its /MACRO
option. To update a macro library (that is, to add or delete macro
definitions), simply edit the ASCII text file and then reprocess the
file with the LIBRARY command.

To build an object library, again use the editor to create an ASCII
text file. The file contains the routines and functions written as
complete program segments in either the MACRO-l 1 assembly
language or the FORTRAN IV programming language. Then process
the file, producing an object module. Next use the LIBRARY com-
mand in combination with its /CREATE option. Once the library tile
is created, you update it (add and delete routines) by means of
various other options to the LIBRARY command.

In the following exercises, you create an object library that contains
three input object modules. The routines in two of these modules
can be used by both MACRO and FORTRAN programs; the routine
in the third module can be used only by FORTRAN programs.

To build the library file, first use the editor to create the three ASCII
text files. Then convert the ASCII text files to object format.
Finally, process the object files with the LIBRARY command. Once
you create the library file, use LIBRARY command operations and
options to add and delete modules and globals and to obtain a listing
of the library file contents.

13-2

Constructing Library Files

The first step in building an object library is to prepare the source
code of the routines and functions that you choose to include in the
library. Use the editor to create the following three text files, calling
them FIRST.MAC. SECOND.MAC, and THIRD.FOR respectively.
FORTRAN users should create all three files; MACRO users (who do
not use FORTRAN) should create only the first two files.

Creating Object
Library Input Files

FIRST.MAC

l T 1 TLE COMB
, MCALL , F’RIN’I

i I-LEN(A)
l GL.OBL LEN

L-EN : TST (R5)t iSKIF’ c OF ARGS
MOV @R5r RO iGET STRING F’GINTER

1!6: TSTB (RO)-t ;F’IND ENIt OF’ STRING
BNE 13 PLCIOF’ UNTIL NULL. BYTE
IIEC RO il3ACK UP
SUB CaFil5rRO PCALC # OF CHARS IN STRING
RTS PC

i CALL F’R1’NT (ISTRNG)
+ GLGBL. PRINT

ivIm: MOV 2(R5) YRO
.F’RIN7
RTS rx
. ENrl

SECOND.MAC

.TITLE ITTOUR
i I=ITTOUR(ICHAR)
3 I=0 CHARACTER HAS BEEN OUTF’UT
i 1

. XCALL.
KING BUFFER IS FULL
. TTOUTR

.GLOHL ITTOUR
ITTOUR:MOVB @2(R5) PRO iGET CHARACTER

. TTOUTR i . TTOUTR
BIC RO,RO iCLEAR ERROR FLAG
ADC RO
RTS PC i RETURN
. END

THIRD.FOR

C CALL PUTSTR(LUNyAREAyCC)
SUBROUTINE F:‘IJTSTR(L-UN,AREAyCC)
LOGICAL*1 AREA (250) y CC
IF(K) GOTO 1
WRITE (LUNY~~)(AREA(I)YI=~YL~~(~~~~))
RETURN

1 WRITE(LUNy99)CC,(ARE~(I)y~~l,L~~(~~~~))
YY FORMAT(250Al)

END

13-3

Constructing Library Files

The routines in these files are representative of the kinds of services
generally provided in a library file. They are, in fact, taken from the
RT-11 system subroutine library, SYSLIB.

FIRST.MAC contains two global routines, LEN and PRINT. The
LEN routine returns the number of characters in a string. PRINT
outputs an ASCII string terminated with a zero byte to the terminal
(it is the FORTRAN equivalent of the system macro .PRINT, used
in the demonstration program in Chapter 11). SECOND.MAC con-
tains one global routine,,ITTOUR, which transfers a character to
the console terminal. THIRD.FOR also contains one global routine -
PUTSTR. This routine can be used only by FORTRAN programs
and writes a variable-length character string on a specified
FORTRAN logical unit (see GRAPH example).

Once you create these text files, the next step is to convert them
from ASCII format to object format. You assemble or compile the
text tiles as appropriate, first assembling FIRST.MAC and obtaining
an object module (a listing is not necessary). FORTRAN users who
are not familiar with the assembly process simply type the MACRO
commands as shown.

Long Command Format

l MclCRO (RET)

Files? FIRST (RET)
ERRORS DETECTED: 0

Short Command Format

MACRO FIRST (RET)
;RRORS DETECTEII: 0

The command creates an object module called FIRST.OBJ on the
system volume. The assembler prints a message on the terminal
indicating the number of errors encountered during assembly:
this message should show 0 errors.

Likewise assemble SECOND.MAC. Again, no errors should occur.

Long Command Format

. MACRO (RET)
Files? SECOND (RET)
ERRORS DETECTED: 0

13-4

Constructing Library Files

Short Command Format

, MI~CX’O !X:CCINlr (RET)
lgtf\'OFi'S DETEcTED: 0

If any errors occur during the assembly operations, you have in-
correctly typed the source files. Find the correct the typing errors,
and reassemble.

If you are a FORTRAN user, continue by compiling THIRD.FOR.

NOTE

If in Chapter 9 you needed to load the special FORTRAN/
BASIC language volume, you must again load that volume
before you can compile THIRD.FOR. Read Appendix B,
“Substituting Volumes During Operations”, before
continuing.

Long Command Format

,F'ORT~~N (RET)
Files’? THIRD (RET)
F’UTSTR

Short Command Format

,I-‘C)RTIIAN wi:I:I:irx:i (RET)
F’IJTSTR

Notice that the compiler prints the name of the global (PUTSTR)
generated. If any errors occur during the compile operation, you
have incorrectly typed the source file. Find and correct the typing
errors and recompile.

Once you have produced the object modules, you are ready to build
the object library file.

Use the LIBRARY command in combination with its /CREATE
option to construct a library file. You must indicate in the com-
mand the name of the library file and the names of the input object
modules. Call the library file LIBRA and specify as input the two
object modules, FIRST and SECOND. The LIBRARY command
assumes that the input modules have the .OBJ file type (unless
you indicate otherwise) and automatically assigns .OBJ to the
library file.

Building the
Object Library

13-5

Constructing Library Files

Long Command Format

Short Command Format

Once the CREATE operation is complete, obtain a listing of the
library file’s contents using the LIBRARY command with its LIST
operation. The line printer is the assumed output device for the list
file, although you may indicate a different output device by adding
the 2-letter device code to the LIST option shown below.

LIBRARY/LIST

Updating the
Object Library

Long Command Format

(Line printer) (Terminal)

Short Command Format

(Line printer) (Terminal)

The listing produced shows the library file’s current contents. This
library has three entry points: LEN and PRINT in the first module
and ITTOUR in the second module.

127’-1 J LJERAF\‘IAN UO3 + 05 F’RI MI-~..JlJl.,--77 1. 1. :O?i: 29
LIBRA FRI O8.,~...JUI..:~-.‘;77 10 : 59 : 43

MOIIIJLE Gl...ObAL.S G I... (:I E A I... !.i GL.OI3AL.S

LEN F’I:;‘IN’T

:C TTCHJR

Once you have created an object library, you use various LIBRARY
command operations to update and maintain it - to add and
delete modules and globals.

13-6

Constructing Library Files

If you created the THIRD.OBJ object module, you can add it to the
library file using the INSERT option. If you did not create this
module, read through this section anyway; the command steps apply
to any object module you wish to insert.

Long Command Format

* I... :I: B Ii A li Y / I N s 1:: I:; ‘I’ (R
Librarr’? I.” I E I:E A (RET)
F i 1. e 5 ‘I’ ‘I’/-I 1: I? r:i (PET)

Short Command Format

This operation inserts the object module contained in the file
THIRD.OBJ, including all its globals, into the library file LIBRA.
Obtain a listing of the library contents, using the LIST option, to
verify that the new globals have been added. The listing should look
like this:

RT-1. I LIEk’ARJAN UOJ + 05 F’IF’I 08”-..JIJl._-77 I:1 :05: 18
I.“IERA I::’ I:(:[() (j J U I- 7 7 11. 1 : () 4 : 22 :L

MODULE: GL..OEAL.S GLOICJALS GL0BAL.S

LEN F’ I? I i-4 ‘1
I T’TOUI?
F’ u T s T R

This listing shows the complete library file containing the globals
from all three modules.

You can remove individual globals by using the REMOVE option.
For example, to remove the global ITTOUR, type:

Long Command Format

LIBRARY/
INSERT

LIBRARY/
REMOVE

13-7

Constructing Library Files

Short Command Format

SUMMARY:
COMMANDS FOR
MAINTAINING
LIBRARY FILES

FILE
MAINTENANCE

l I~.:l:EI~AR’f/REMC)ul~~ LIBRA (RET)
G:kobal? ITTOIJI? (RET)
Globa:l’?@

The library file’s contents now look like this:

RT-11 LIBRARIAN UOJ+O!5 I-‘RI OU--JUL..--77 l.1:10:22
L1’BRA FRI OS-JUL.--77 l.l:1I,O:05

PXIDIJLE GLOHALS GLOBALS GLOBALS

LEN
F’UTSTR

wwu

These are some of the library maintenance operations that you can
perform using the LIBRARY command. Other library operations
are available and are explained in the RT-11 System User’s Guide,
Chapter 12.

LIBRARY /MACRO
Create a macro library.

LIBRARY/CREATE
Create an object library.

LIBRARY/REMOVE
Remove globals from the object library.

LIBRARY/INSERT
Insert object modules into the object library

LIBRARY/LIST [:filespec]
List the current contents of an object library on the line
printer: [:filespec] is an optional output file and/or device.

Since all the object modules used in this chapter already exist as
modules within the provided system library SYSLIB, there is no
need to save them or the LIBRA library file. You can delete these
object modules and their source files from your system volume
using the DELETE command as follows (exclude THIRD.* from the
command line if you did not create this file):

13-8

Constructing Library Files

Long Command Format

Short Command Format

FORTRAN users who performed the special instructions given in
Appendix B should also delete the THIRD files from the storage
volume.

Long Command Format

+DELETE/NOQUERY (RET)
Files? uOL.:T'HIRn.*~

Short Command Format

RT-11 System User’s Guide (DEC-1 1 ORGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

REFERENCE

A guide to the use of the RT-I 1 operating system. See Chapter 12.

13-9

CHAPTER 14

DEBUGGING A USER PROGRAM

Debugging is the process of finding and fixing the programming
errors that almost every user program initially contains. From
your experience in Chapters 9, 10, and 11, you already know about
some of the kinds of programming errors that can prevent a program
from working properly when you run it on the system.

Frequently, debugging a program requires more time and persistence
than actually writing the program code. Therefore, you should
anticipate the debugging process throughout the entire program
development cycle. That is, you should follow some common pro-
gramming practices that help you to avoid making programming
errors. When errors become apparent during the various phases of
development, correct them immediately. Test the validity of any
algorithms used within your program. Finally, even though the
program appears to be working properly, check it thoroughly with
test data.

There are several steps you can take to decrease the likelihood of
introducing errors into your program and to make debugging easier
should it become necessary.

First, always use a high-level language if one will suit your program-
ming needs. High-level language programs tend to use fewer state-
ments. English-like words and phrases in the language statements
make the program logic easier to follow.

Design the program. Flowcharting the program, then correlating
it with the program coding, is found to be helpful by many. This
technique simplifies tracking the program logic and module inter-
relationships.

AVOIDING
PROGRAMMING

ERRORS

Use modular programming. Create the program as a series of smaller,
self-contained subprograms. ‘Debug the program in parts.

14-1

Debugging A User Program

WHEN
PROGRAMMING
ERRORS OCCUR

Maximize the use of subroutines, subprograms, and, in the case of
assembly language programs, macros for frequently-needed func-
tions. These help to structure the program and make it easier to
alter or to add features that may be required in the future.

Make use of any software provided for you by the system such as
library routines and functions. System software has already been
debugged and can save you the trouble of recreating the services.

Make the general flow of a program proceed down the page. Avoid
non-structured branching and convoluted logic as these tend to
produce programs that are difficult to debug. Finally, use comments
liberally throughout the program to show what individual statements
or groups of statements do. Use spaces and tabs in the program code
to make it easier to read.

Following these preventative steps eliminates many common pro-
gramming errors and helps to create a programming style. However,
even the most careful programmer may overlook a small detail: a
typing error during program creation, an undefined label in the code,
or some other programming bug. When something is overlooked,
debugging becomes necessary

There are three general types of programming errors - syntax,
clerical, and logical.

Syntax errors are errors in the physical coding, such as omitting
necessary portions of the statement (delimiters for example), revers-
ing the order of information within the statement, or misspelling
keywords or instructions.

Clerical errors are non-syntax errors in the physical coding, such as
mistyped letters or digits in data. Clerical errors may result in valid
statements that do not reflect correct programming logic.

Logical errors are errors made in program development.

The translating program (compiler/assembler/interpreter) generally
catches syntax errors and flags them as such in the program listing
or on the terminal. On the other hand, you must locate clerical and
logical errors by reexamining the program code and logic, using one
or more debugging techniques.

14-2

Debugging A User Program

Some debugging techniques involve insertion of special debugging
code within the program for checking its execution. For example,
one way to locate logical errors is to write out intermediate results
of a program. You can insert WRITE or PRINT statements at stra-
tegic points in the program logic to show the intermediate state
of values being calculated. When debugging is complete, you can
remove these statements or change them to comments.

You may also find it useful to write a special debugging subroutine
that writes out values, particularly if the same variables must be
examined in several places or many times.

Another method for finding logic errors is to break the program into
smaller parts and test each part separately with artificial data (called
unit testing). After you test all parts individually, you can test
routine and module linkage to see that all related code fits together
properly (called system testing).

Check the program with test data. A standard method for checking
out modules is to write a test program that calls the program with
possible options. The test should cause the program to execute all
steps in all algorithms. Check programs first with representative data,
then with improper data (data that is not in the correct range or
size). Scramble input data to ensure that its sequence has no effect
on the results. You should also do volume testing to see that the
program works successfully with a representative amount of data.

Each programming language has special debugging aids for examining
immediate states. For example, BASIC has a STOP statement that
you can insert at strategic points in the program. When execution
arrives at a STOP statement, it pauses and you can then use BASIC’s
immediate mode to examine variables, values, and so on. Use an
immediate mode GO TO statement pointing to the appropriate line
number to continue execution.

FORTRAN IV has a special DEBUG statement indicator, a D in the
first column of a statement line. Operations in statements marked
with a D can perform useful debugging functions, such as printing
intermediate results. You can treat such statements as source text
(and thus execute them) or as comments (and thus ignore them)
depending on your use of a special compiler command option. In
addition, FORTRAN IV has a traceback feature that locates the
actual program unit and line number of a runtime error. If the

14-3

Debugging A User Program

USING THE
ON-LINE
DEBUGGING
TECHNIQUE

program unit is a subroutine or function subprogram, the error
handler traces back to the calling program unit and displays the name
of that program unit and the line number where the call occurred.
This process continues until the calling sequence has been traced
back to a specific line number in the main program unit. Finally,
FORTRAN IV has an optional interactive debugger called FDT
(FORTRAN DEBUGGING TECHNIQUE) that can be linked with
a user program.

For MACRO-l 1 users, RT-11 provides a special on-line debugging
tool called ODT (On-line Debugging Technique). This is provided as
part of the RT-11 operating system and is an object program on your
system volume. It is used exclusively for debugging assembled
MACRO-l 1 programs.

The use of ODT is described next for MACRO-l 1 users and for those
FORTRAN IV users who will be combining MACRO and FORTRAN
program code. Other users can continue to Chapter 15, or go back
and perform one of the other language demonstrations. Refer to the
reading path outlined in the Preface.

ODT is an interactive debugging tool that allows you to monitor
program execution from the console terminal. ODT is provided as
the object module ODT.OBJ on your system volume. To use it, you
link ODT.OBJ with the assembled MACRO program that needs de-
bugging. You then start execution of the resulting load module,
not at the transfer address of your program, but at the entry point of
the ODT module (shown on the linker load map as the global symbol
O.ODT). Once ODT is started, you can use its special debugging com-
mands to control the execution of your assembled machine language
program from the console terminal, to examine memory locations, to
change their contents, and to stop and continue program execution.

The MACRO demonstration program in Chapter 11 still contains one
error which you can locate and correct using ODT. Several ODT
debugging commands are demonstrated in the process.

Throughout the examples in this chapter you need to refer to the
program assembly listing that you produced in Chapter 11 (SUM)
and storage volume. Print it now on either the terminal or
line printer:

Long Command Format

(Line printer) (Terminal)
.F’RINT (RET) ,TYF’E (RET)
Files? VOL:SUM.LST@@ Files? VOL:SUM+LST~

14-4

Debugging A User Program

Short Command Format

(Line printer) (Terminal)

,F’RZNT ‘JOL:SLJM,L.ST (RET) ,TYF’E UOL.:SUM,L.ST(RET)

Now link the MACRO program object module (SUM.OBJ) stored
on the storage volume (VOL:) with ODT.OBJ by using the /DEBUG

1 LINK/DEBUG 1

14-5

Debugging A User Program

option, and print a load map directly on the terminal or lineprinter
choosing the appropriate command line below:

Long Command Format

(Lineprinter)

. L.INK/MAF’/DEHUG (RET)
Files? UOL:SUM (RET)

(Terminal)

Short Command Format

(Lineprinter) (Terminal)

. LINk’/MAP/DEBUG :;IJM@) , L.:~:~w/M~: 77 : /‘DEBUG SIJM (RET)

HT-11 LINK l..oad naw Tue O:?-~.ll.l.l~-~77 J..3:07:12
SUM . SAU -rit,1e: ODT Ident:

Section Addr Size Global u31.uc (.iI.obal ue 1l.W - Glob?.1 Value

, AHS, 000000 001000 (RW.I,GBL,AHS.UUFi)
001000 006472 (RW I 1 I ILCL I REL I CCIN)

Look at the load map and note that ODT, which is always linked
first in memory by the /DEBUG option, starts at address 1000. The
two modules together, ODT and SUM, reside in memory up to loca-
tion 7472, the high limit. Look at the symbol table listing for the
MACRO program. This shows that the program is 372 (octal) words
long. To find where the MACRO program begins in memory, sub-
tract 372 from the high address, 7472. The MACRO program starts
at location 7 100.

To load and start execution of the load module, use the monitor
RUN command. The RUN command brings the entire load module,
called SUM.SAV, into the absolute (physical) memory locations
shown in the load map and begins execution automatically at the
starting, or transfer, address of the first module in memory, which is
ODT. Type:

Long and Short Command Formats

14-6

Debugging A User Program

ODT prints an identifying message on the terminal and an asterisk
indicating that you are in ODT command mode and can enter an
ODT command. You are now using ODT to control the execution
of your drogram. 1 ODT commands let you execute the entire
program or only portions of it, examine individual locations of
locations, examine the contents of the PDP-11 general registers,
and change the contents 01 any iocations you wish. If you make a
mistake while you are typing any commands, type the DEL key;
ODT reponds with a ? and an asterisk, allowing you to enter another
command.

Look at locations 6 through 16 in the assembly listing. With ODT,
you can examine these locations in memory as follows (all ODT
commands use octal numbers, as dces the assembly listing):

*7106/0127()5 0
007110 /000Il.06 0
007Ji.2 /012700 0
007114 /000A.07 0
007116 /012701 (RET)

By typing a location address and a slash, you open that location for
examination and possible modification. A line feed closes that
location and opens the next sequential location for examination.
A carriage return simply closes the currently open location.

Note that since the MACRO program was linked to begin at address
7100, you must add the constant 7 100 to each address shown in
the assembly listing to obtain the actual address used during loading.
ODT can do this for you using special internal locations called
relocation registers. Each register can be set to a relocation constant.
Thus, if you have linked several modules together, you can set
various relocation registers to the appropriate relocation constants of
the individual modules. You then indicate in your command which
register to use, and ODT automatically adds the constant in that
register to the address specified in your command. For example,
set relocation register 0 to 7 100:

*7100 i OR

‘Be sure to read Chapter 16 of the RT-11 System User’s Guide before you use
ODT with any of your own programs. You must observe certain precautions
when you write your program and when you load it with ODT. For example,
you should make sure that ODT is not loaded into memory locations used by
your program. There are steps you can take to prevent this from occuring.

14-7

Debugging A User Program

Now, to examine locations 100 through 110, type:

*or 1oo/ooooll2 0
09000102 /10x375 0
0 Y 0001.04 /0652700 0
0 t 000Il.06 /000070 0
0Y000li0 /104;341. (RET)

Indicate the number of the relocation register (followed by a
comma) in your commands, since generally you will have more than
one register set at a time.

Execute the MACRO program now using the ODT ;G command,
indicating in the command where you wish execution to start. In
this case, the program’s start (transfer) address is 7100, so type:

As you discovered in Chapter 11, these program results are incorrect,
Note that a period has printed, indicating that you are back in
monitor command mode. This particular MACRO program returns
to the monitor after execution. Therefore, to continue using ODT,
you must RUN the load module again:

Long and Short Command Format

*RUN SUM (RET)

ODT VO1.06
*

Changes that you make to a program while using ODT, and ODT
register assignments that you make, are temporary. Thus when
you restart ODT, you must reenter any commands, such as reloca-
tion register commands, that you want to remain in effect. Reset
relocation register 0:

*7iOoiOR

To help you find programming errors, ODT provides a breakpoint
feature. Setting one or more breakpoints in a program causes pro-
gram control to pause at those locations during execution. When
control pauses, ODT prints a short message on the terminal, inform-
ing you that a breakpoint has occurred and showing the location
at which execution has stopped. This pause returns control to ODT

14-8

Debugging A User Program

and gives you the opportunity to examine and possibly modify
variables or data. Breakpoints are numbered from 0 to 7, thus you
can have a total of eight breakpoints set at various instructions in
the program at one time.

For example, set breakpoint 0 at location 22 (line 16 in the assembly
listing) and breakpoint 1 at location 40 (line 23):

toY22;oB
SOt4OilB

Now when you run the program, control pauses first at location 22.
Since the breakpoint was set at the instruction at location 22, that
instruction has not yet been executed, but all preceding instructions
have :

Note the message that ODT prints when execution reaches the
breakpoint. Normally when execution encounters a breakpoint, only
the breakpoint number and location are printed on the terminal.
In this case, the letter T precedes the breakpoint message. This
happens because of the way the ODT program uses the console
terminal. The assembly instruction at line 12 of the assembly listing
(.PRINT) requests the monitor to print a program message at the
same time that ODT needs to print the breakpoint message. ODT,
however, has higher priority. By the time the .PRINT request starts
to print the program message, execution reaches the breakpoint and
gives control to ODT. The .PRINT request has time to print only
one character of its message before ODT takes over and prints the
breakpoint message. When the program regains control, its message
will continue printing from the second character.

Program control has paused at location 22 in the MACRO program.
Look in the assembly listing at the instructions that occur there. The
instruction at location 16 (line 15) stores the address of the digit
vector (at label A) in register 1 (Rl). Examine the contents of
register 1 to discover what this address is; then open the address and
examine its contents and the contents of the next several addresses
following it using two new ODT commands, $ and @:

* rl; l / 0 0 7 y -7 &.a” 4 @
OY 000124 /00000.1.0
Or 000126 /00000l0
0 I, 000130 /00000:1.0
0 Y 000:1.32 /000001 (RET)

14-9

Debugging A User Program

The $ command opens for examination the contents of one of the
general PDP-11 registers 0 through 7. The @ command uses the
contents of the currently open location as an address and opens that
location for examination. Notice that the digit vector A, which
begins at location 124, has been initialized to the value 1, the precise
value indicated by the comments at line 48 of the program listing.

If you were to continue program execution now, the branch instruc-
tion at line 22 of the assembly listing would cause program control
to loop back to the instruction at line 16 where breakpoint 0 is set,
again causing execution to pause. Since you wanted to continue to
the next breakpoint (set at location 40), you must first cancel the
breakpoint at location 22. To do this, type:

This removes the breakpoint at location 22. The number (in this case
0) indicates which breakpoint is to be removed. Now continue
program execution using the ;P command (proceed from break-
point): execution progresses through the loop and continues until
it reaches the breakpoint set at location 40:

(Note that the monitor has time to print the second character, and
perhaps additional characters, of the program message before ODT
gains control.) Now examine the contents of several of the program
vector locations beginning at location 124;

The instructions prior to the breakpoint at location 40 constitute a
multiplication routine. This routine multiplies the vector contents
by 10 (12 octal), as you have just verified.

You can see how the breakpoint feature is a very useful debugging
aid. It allows you to execute selected portions of a program and
verify that data and variables are being used correctly during exe-
cution. You can use the breakpoint feature to locate the error that
is in this program.

14-10

Debugging A User Program

First, clear all previously set breakpoints (in this case, there is only
the one at location 40) by typing the ;B command with no argument.

Now set a breakpoint at location 110 (line 41 of the assembly
listing). You want to verify the data that is being passed to the
monitor in register 0 in the ADD instruction in line 40. Type:

Now examine the contents of register 0:

*JiO/Q00()&5 \Oh5 “L.5 (RET)

At this point in execution, register 0 contains 000065. The backslash
(9 command prints the low-order byte of the opened location
on the console terminal and also converts this to an ASCII character
(if it is a valid ASCII code) and prints the character. In this case, the
number 5 prints. If you look back at the program results printed
earlier in this chapter, you can see that 5 is the first digit of the
tabulated result (following the message “THE VALUE OF E IS
2”). If you are experienced in mathematics, you know this result is
incorrect because the approximate value of E is 2.7 18. And you now
also know that the program error is not in the interface to the
monitor service used to print the result (.TTYOUT), but occurs
somewhere before location 110. So the next step in debugging this
program is to set a breakpoint at some earlier point in the program
logic and to rerun the program. You must restart ODT to do this.
Return to monitor mode by typing CTRL/C. The remainder of the
program message prints on the terminal, then the monitor period
appears, indicating that you are in monitor mode:

* (GIRL/C)
VALUE OF E :cs :

2.

Restart ODT and reset relocation register 0:

OD’I UOI +06
*((7:Looiol~

14-11

Debugging A User Program

Set a breakpoint at location 76 (line 37 in the assembly listing) and
start program execution at its beginning:

tOY76;Ob
*OrOiG
TEOi0?000076

Again, examine register 0 to verify its contents:

*~0/00003~3 (RET)

By following the program logic in the assembly listing, you know
that the value in register 0 should at this point be 33(octal) (2.7, pre-
viously multiplied by 10, = 27(decimal) = 33(octal)). So the value
in register 0 is correct. From this, you can deduce that the error
must occur somewhere between locations 76 and 110. The proper
step now is to check the assembly listing, where you find the error
at line 40. The decimal point that should follow the 10, identifying
it as a decimal 10, is missing. Therefore the program treats the 10 as
and octal 10, or 8(decimal), making each digit in the result off by an
additive factor of 2. The data in location 106, then, should be 72,
not 70. Since this data has not yet been used, you can change it now
with ODT and continue program execution; if it had been used, you
would need to restart ODT and then change the data. To change the
contents of a location, simply open the location, type in the new
contents, and close the location using a carriage return.

Now eliminate all breakpoints and continue program execution; the
correct results should print:

SUMMARY:
COMMANDS FOR
DEBUGGING
PROGRAMS

To Start ODT

LINK/DEBUG
Link the assembled program (the program to be debugged)
with the ODT object module.

To Use ODT’

Close the currently open location and open the next sequential
location for examination and possible modification.

1
Only a very few of the available debugging commands have been demonstrated
in this chapter. Consult Chapter 16 of the RT-11 System User’s Guide for all
ODT commands.

14-12

Debugging A User Program

(RET)
Close the currently open location.

addr/
Open the location indicated (addr) for examination and possible
modification.

addr;G
Begin program excution at the indicated address (addr).

Continue program execution from wherever it was stopped at
a breakpoint.

addr;nB
Set one of the eight available breakpoints (n) at the indicated
address (addr).

DB
Cancel the indicated breakpoint (n).

;B
Cancel all breakpoints.

addr;nR
Set on of the eight available relocations registers (n) to the
relocation constant value indicated by addr.

$n
Open one of the eight general registers (n) for examination and
possible modification.

Use the contents of the currently open location as an address;
close the currently open location: go to the new address and
open it for examination and possible modification.

Print on the console terminal the low-order byte of the cur-
rently open location; if possible, convert the value to an ASCII
code and print the corresponding character on the terminal.

Changes you make with ODT are temporary. Therefore you should
now use the editor to correct the source program SUM.MAC. You
should edit line 40 so that it reads:

FILE
MAINTENANCE

AIlIll #10r+‘OYl:i:o i Pl n I< 1:: X:1 :I: 6 :I: ‘r n :ii !I :I: :I:

14-13

Debugging A User Program

REFERENCE

The file SUM.MAC is currently stored on the storage volume VOL:.
Edit this file and update the comment; then reassemble, relink, and
rerun it to verify that it is correct. When you have done this, store
the updated version of the source tile on the storage volume under
the same name (SUM.MAC).

After you have corrected and rerun the program, continue on to
Chapter 15, or go back and perform one of the other language
demonstrations. Refer to the reading path outlined in the Preface.

RT-11 ,Sytem User’s Guide (DEC-1 I-ORGDA-A-D). Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 16.

14-14

CHAPTER 15

USING THE FOREGROUND/BACKGROUND MONITOR

A special feature of the RT-1 1 operating system is that it provides
a choice of operating environments. Thus far, you have used its
single-job environment to run the system utility programs and the
demonstration programs one at a time. A second environment, called
the foreground/background environment, is also available. This
environment causes two independent programs to reside in memory
at the same time and to execute concurrently.

Because there are different operating environments, there are ac-
tually different monitors. You are familiar with the single-job (SJ)
monitor. You have used the single-job monitor so far to control the
system and to perform the various exercises in this manual.

To use the foreground/background environment, you activate a
second monitor, called the foreground/background (FB) monitor.
The FB monitor is simply an extension of the SJ monitor; it is com-
pletely compatible with the SJ monitor, but provides extended
monitor command operations for controlling a 2-job envir0nment.I

The foreground/background environment is designed so that two
programs can (but need not) share memory and run concurrently.
One of these programs you designate as the foreground program. The
system gives priority to the foreground program (or job, as it is
usually called) and allows it to run until some condition, perhaps
waiting for an I/O completion, causes it to relinquish control to the
other program (the background job). The system then allows the
background job to run until the foreground job again requires con-
trol, and so on. The two programs thereby share system resources.
Whenever the foreground program is idle, the background program
runs. Yet whenever the foreground program requires service, its
requests are immediately satisfied. To the user at the terminal, the
two programs appear to run simultaneously.

THE
FOREGROUND/
BACKGROUND
ENVIRONMENT

‘The RT-11 operating system also provides a third operating environment
called the extended memory environment. This environment is governed by
the extended memory (XM) monitor and allows advanced users to utilize up
to 128K (words) of memory. See Chapter 3 of the RT-11 Advanced Pro-
grammer’s Guide for more information.

15-1

Using the Foreground/Background Morlitor

CHANGING
MONITORS

El BOOT

Foreground priority programs are generally time-critical. For ex-
ample, you may want to designate as the foreground job a program
that collects and analyzes data. Background programs are usually
nontime-critical. Thus, you can continue to do program development
using monitor commands to run the editor, the FORTRAN compiler,
the linker, and so forth, as the background job.

Foreground/background operation requires that you have at least
16K words of computer memory (each 4K equals 4096 words) plus a
system clock. Not all RT-1 1 computer systems support foreground/
background operation since the hardware it requires is optional. To
determine if your system can support FB operation, check the Hard-
ware Configuration section in Chapter 2. If you have at least 16K of
memory and the system accepts a TIME command, you can use the
foreground/background monitor to perform the exercises in this
chapter. Otherwise, you do not have the hardware that is necessary
to support an FB environment and you should skip ahead to Chapter
16.

Whenever you bootstrap the RT-11 system, it prints a message on the
console terminal telling you which monitor has been loaded into
memory. The message for the single-job monitor is:

RT.-11SJ uo3--:~::~:

.

The single-job monitor is currently in memory. To use the FB envi-
ronment, you must reboot the system so that the FB monitor is
loaded into memory, overwriting the SJ monitor. You use the moni-
tor BOOT command to make this switch.

If you have not entered the date and time, do so before booting the
FB monitor. These features remain active throughout the booting
procedure if the BOOT command is used.

Refer to question 3b in Chapter 2 to obtain the device code for your
system volume and substitute this 2-character code for sy in the com-
mand line shown below:

15-2

Using the Foreground/Background Monitor

Long Command Format

. BOOT (RET)
Ikvice or file? 5rMNF’B@

RT-11FB v()j-:.;;.:

Short Command Format

HT-11FB v () 3 - >.; >:

Once the system executes the BOOT command, the monitor for-
merly in memory is no longer active. It is replaced by the alternate
monitor. The message printed on the console terminal tells you
which monitor has been loaded.’

Using the FB monitor is essentially no different than using the SJ
monitor. All commands that are legal in the SJ environment are legal
in the FB environment; their syntax and use are exactly the same. In
addition, programs that you write for the single-job environment can
always run as the background job in the FB environment.

Since the FB monitor is actually an extension of the SJ monitor, it
provides some additional commands and programming features that
the SJ monitor does not have. These allow you to control the 2-job
environment. They let you interact with the two jobs and let the two
jobs interact with one another.

When two jobs run simultaneously, you must have some means of
indicating to which job you are directing commands. Likewise, the
two jobs must have the means to identify themselves when they have
messages to print. The following are some conventions that apply to
system communication in a 2-job environment.

1. The foreground job has priority. If both the foreground
and the background job are ready to print output at the
same time, the foreground job does so first. The fore-
ground job prints a complete line, then the background job
prints a complete line and so on.

USING THE FB
MONITOR

Communication
in a Two-Job
Environment

lTo reboot the single-job monitor, simply reply to the BOOT command’s
DEVICE OR FILE ? prompt by typing syMNSJ.SYS (RET)

1.5-3

Using the Foreground/Background Monitor

Creating the
Foreground Job

2. Either job can interrupt your input at the terminal if it has
a message to print.

3. Messages printed by the background job are preceded by
the characters B>.

4. Messages printed by the foreground job are preceded by
the characters F>.

5. Typed commands are initially directed to the background
job. You can redirect control alternately to the foreground
and background jobs using the CTRL/F and CTRL/B
commands.

To direct typed input to the foreground job, type
CTRL/F. This command instructs the monitor that all sub-
sequent terminal input (commands and text) is directed to
the foreground job. Typing this command causes the sys-
tem to print an F> on the terminal unless output is
already coming from the foreground job. Command input
remains directed to the foreground job until the fore-
ground job terminates, or until it is redirected to the back-
ground job via CTRL/B.

To direct typed input to the background job, type
CTRL/B. This command instructs the monitor that all sub-
sequent terminal input (commands and text) is directed to
the background job. Typing this command causes the sys-
tem to print a B> on the terminal unless output is already
coming from the background job. Command input remains
directed to the background job until redirected to the fore-
ground job via CTRL/F.

These conventions apply only if two jobs are running simultaneously.
If only one job is running, communication is the same as in the
single-job environment.

In this demonstration you use the FB monitor to run two programs.
You run the editor as the background job to create a short text file
while you run a printing output program as the foreground job.

The printing program resides on your system volume as a file called
SPOOL.MAC. Its function is to transfer all files on an assigned vol-
ume called SPL: that have a file type of .LST to another device,
deleting the tiles from the assigned volume once they are transferred.
Generally, the line printer serves as the output device so that the
.LST files can be printed. However, if you do not have a lineprinter
available, you can use your storage volume.

15-4

Using the Foreground/Background Monitor

While the foreground program processes the .LST files, you use the
editor to create a short text file, giving this text file a .LST file type
so that it too can be processed by the SPOOL program once it is
created.

The SPOOL program is an assembly language source tile and must be
assembled and linked before you can use it. If you performed the
demonstration in Chapter 11, you are already familiar with
assembly/link operations and the following command explanations
can serve as review. If you did not read Chapter 11, simply type the
command lines as shown. Following assembly, the system prints a
message on the terminal indicating the number of errors encountered
during assembly. This message will show 0 errors.

Long Command Format

Short Command Format

The output resulting from this MACRO command includes an
object file called SPOOL.OBJ and a listing tile called SPOOL.LST.
The command creates both files on your system volume. You must
link the .OBJ file to produce a runnable foreground program. You
use the LINK command, just as you have in earlier chapters, but you
also use the /FOREGROUND option1 . This option produces a l,oad
module with a .REL file type which signifies to the system that the
tile is a foreground program and is to be run as the priority job.

Long Command Format

*l...:CNli/l~:‘OFi’li.:GI:t~311NX:l (RET)
1::’ i 1. @ $7 ‘.;’ S 1::’ 0 0 I,.. (RET)

Short Command Format

‘This command option also applies to compiled FORTRAN programs that are
to be linked as a foreground job.

15-5

Using the Foreground/Background Monitor

Executing the
Foreground and
Background Jobs

El LOAD

Since the purpose of this foreground program is to process files that
have a .LST file type, the next step is to provide some .LST files for
it to use. The file SPOOL.LST, just created by the MACRO com-
mand, can serve as one. The background program you create using
the editor can serve as another. If you want to list additional files
as part of this exercise, create them now so that they have .LST
file types. Remember that the SPOOL program deletes the .LST
files from the system volume once they are processed.

Now you are ready to operate the 2-job environment. First decide
which device to use for the output of the foreground program. If
you have a line printer, use it for the output device or use your
storage volume; in the latter case, the SPOOL program simply
transfers ~ the .LST files to the storage volume and deletes them
from the system volume.

The program assumes that the output device is the line printer.
Therefore, if you prefer to use your storage device, assign the line
printer code (LP:) using the ASSIGN command. Type the following
command, substituting the 2-character code from Table 4-2 for the
storage volume in place of xx (line printer users may ignore this
command):

Long Command Format

Short Command Format

, n!;s:r:(3N :.:x: I...!::‘: (RET)

When you use the FB monitor, you must always load into memory
the peripheral device handlers needed by the foreground program.
You use the monitor LOAD command to make a device handler per-
manently resident in memory. Since the SPOOL program uses the
line printer, you must load the LP device handler. If you have
assigned the code LP: to another device, the system automatically
loads the assigned handler. Type:

15-6

Using the Foreground/Background Monitor

Load Command Format

l 1”ORX:l (RET)

II e v i cc; ? L. 1::’ : (RET)

Short Command Format

* L.OAL’I L.1”: (RET)

The command to load and start execution of the foreground job is
FRUN. It is similar to the RUN command except the system auto-
matically loads and starts the execution of the foreground .REL pro-
gram. Use this command to start the execution of SPOOL.REL.

Long and Short Command Format

lz “:.
. .

ASSI(jN wr LOAL’I SF’I...

B 1::.

Here is an example of foreground communication. The foreground
SPOOL program detected an error condition that prevented its fur-
ther execution. Before it printed an explanatory message, however,
the system first identified the message as foreground output by print-
ing the characters F>. The background monitor next printed the
characters B> and a period, indicating that control returned to moni-
tor command mode. Command input remains directed to the back-
ground job.

The message printed by the. foreground job (ASSIGN or LOAD SPL)
informs you that before you can use the program you must make
another device assignment ~ you must assign the logical name SPL:
to whatever device contains the .LST files. In this case, that device is
the system volume. Substitute the 2-character code for your system
volume (refer to step 3b of Chapter 2) in place of sy in the command
below:

Long Command Format

El FRUN

15-7

Using the Foreground/Background Monitor

Short Command Format

Once you make this assignment, you are ready to run the foreground
job again.

Long and Short Command Format

l 1.: Ii-UN c;I:~‘I:lc)I... <RET)

If you are using the line printer as the output device, notice that a
listing begins to print on it almost immediately. This is the fore-
ground job executing. You will not be aware of the foreground job
processing the .LST files if you are using your storage volume as the
output device.

If the foreground program runs out of .LST files to process, it simply
waits for you to provide more, checking at 30 second intervals until
then. Thus you can ignore the foreground job for now and concen-
trate on using the editor as the background job. Run the editor to
create the text tile shown below. Call this file TEXT.LST. When you
have finished entering the text, close the file with the EX command.

Long and Short Command Format

Since this file has a .LST tile type, the foreground job will process it.
In fact, as long as there are .LST files on your system volume, the
SPOOL foreground processes them. When it runs out of tiles to proc-
ess, it simply waits for more. Meanwhile, you can continue to work
in the background.

15-8

Using the Foreground/Background Monitor

When you think the foreground program is done processing all the
.LST files that you have provided (for example, if the line printer
stops printing), obtain a directory listing of your system volume.
There should be no .LST files left.

Long and Short Command Format

If there are still files to be processed, wait a bit, then obtain another
directory listing. While you wait, you can create another file, rerun
one of the previous demonstrations, or perform any other system
operation that you wish. You can use the background of an FB envi-
ronment in the same way as the SJ environment.

When the SPOOL program has processed all the available .LST files,
you should terminate the foreground job. To do this, you must first
use the CTRL/F command to direct terminal input to the fore-
ground. Type :

+ (CTR]
1::’ ‘.:. . .

The system prints the characters F> to remind you that you are now
directing command input to the foreground job. Use the double
CTRL/C command to interrupt and terminate the execution of the
foreground job and return control to the background job.

Since you are now using only the background of the foreground/
background environment, the system is operating like a single-job
system.

You should unload the foreground job and the LP handler to
reclaim the memory space for background use. Use the monitor
UNLOAD command as follows:

15-9

Using the Foreground/Background Monitor

Long and Short Command Format

, I.Jf4I...i:lAI:r Fi; y l...I::’ : (RET)

FG-represents the foreground job and you should use this code
whenever you want to unload it. You represent devices by their 2-
character device codes.

Retrieve the listings produced as the result of this demonstration
from the line printer. If you used your storage volume as the output
device for the SPOOL program, obtain a directory listing to see that
the .LST files were transferred as expected:

Long and Short Command Format

(The listings and the directory may be shown here in a different
order since the SPOOL program processed them as they became
available.)

The foreground program has access to all the system features avail-
able to a background program - opening and closing files, reading
and writing data, and so on. However, before you begin to write and
use programs in the foreground, be sure to read Chapter 1 of the
RT-11 Advanced Programmer’s Guide for coding restrictions.

SUMMARY:
COMMANDS
USED IN AN FB
ENVIRONMENT

BOOT
Bootstrap the indicated monitor (RT-1 lSJ, RT-1 lFB, RT-
11XM) on the system volume.

CTRL/B
Direct all keyboard input to the background job (until
CTRL/F).

CTRL/F
Direct all keyboard input to the foreground job (until CTRL/B).

15-10

Using the Foreground/Background Monito;

FRUN
Load and start execution of the foreground job.

LOAD dh
Make the indicated device handler (dh) resident in memory.

UNLOAD dh
Make the indicated device handler (dh) non-resident in memory,
reclaiming its memory space.

CNLOAD FG
Reclaim the memory space used by the foreground job.

If you reassigned the device name LP: to your storage volume, first
use the DEASSIGN command to restore its original assignment:

Long and Short Command Format

During this exercise you created several .LST tiles on your system
volume: these were all deleted as a result of foreground job execu-
tion. You assembled the source file SPOOL.MAC and produced an
.OBJ tile, linking it to produce SPOOL.REL. Thus, you should save
on your storage volume the files SPOOL.REL and SPOOL.MAC and
delete from your system volume the file SPOOL.OBJ. Do not delete
SPOOL.MAC since this file was distributed as part of the RT-1 1
operating system. You may also retain SPOOL.REL for later general
use as a line printer spooling program.

Long Command Format

FILE
MAINTENANCE

. DELE’rli:/NOQUERY m
Files? SF’001.. l OEJ @-cyJ

15-11

Using the Foreground/Background Monitor

Short Command Format

*COPY SF’001 s MAC 9 SF’OOL. + REL UOL : t, * 0
Files cwiwj:

DK:SPOOL.MAC to UOL:SPOOL+MAC
DK:SPOOL+REL to UOL:SPOOL.REL

l DELETE/NOQUE:li’Y SPOOL. OBJ (RET)

Finally, obtain a brief directory listing of your storage volume so
that you can see its current status:

Long and Short Command Format

TEXT.LST and SPOOL.LST appear if you used the storage volume
as the output device for the SPOOL program.

REFERENCES RT-1 I Advanced Programmer’s Guide (DEC-1 l-ORAPA-A-D), Maynard, Mass.:
Digital Equipment Corporation, 1977.

A technical manual providing RT-1 1 programming concepts. See Chapter 1.

RT-11 System User’s Guide (DEC-1 l-ORGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapters 2,3 and 4.

15-12

CHAPTER 16

USING INDIRECT FILES

The RT-11 system proviues an operational aid called an indirect file
that allows the system to run unattended. An indirect file is a file
composed entirely of monitor operating commands. When you start
the execution of the indirect file, the monitor processes these
commands in consecutive order. So once you have created an
indirect file and started its execution, you can direct your attention
to other tasks or even physically leave the system, since the monitor
executes the commands automatically and consecutively. 1

The kinds of operations that RT-11 can best perform in an indirect
file are those that involve much computer processing but that do not
require your supervision or intervention. For example, multiple
assemblies, compilations, and data transfer operations are ideal
operations for indirect file processing. Also, any series of commands
that you are likely to type often can easily run as an indirect file.

Use the editor to create an indirect file as a text file. You can call the
file by any file name you wish, but you should give it a file type of
.COM, since this file type is the default used by the monitor to locate
the file.

You structure the lines of text that make up an indirect file just like
keyboard input. Thus, if you were to list the indirect file it would
look like terminal keyboard text without any monitor prompts.

CREATING AN
INDIRECT FILE

*The indirect file concept is similar to BATCH processing. Although indirect
files lack many of the BATCH capabilities, they are easier to use than BATCH
(The RT-I 1 computer system also supports a BATCH processor discussed in
RT- 11 System User’s Guide).

16-1

Using Indirect Files

Entering Monitor
Commands

You enter monitor commands into the indirect file as you would on
the terminal. As an example, both of the following accomplish the
same operation when executed as part of an indirect file:

f: [I) 1::’ ‘1’ (RET)

I: i?s 1::’ :I: I... + M r?l I:: (RET)
C)!.J’r’F:‘l: I... , MA(:: (RET)

CI:) 1::“i :I: N F:' :r. I... , MA !:: !I !.I 'T' F :C 1.. + MAC: (RET)

Since monitor prompts are not included in the indirect file, using the
long command format requires that you anticipate each prompt and
its proper response. It is suggested that you use the short command
format and insert the command as a single line of text. Terminate
each command line with a carriage return.

Using the Editor
to Create
an Indirect File

The indirect file that you will now create incorporates several of the
commands previously demonstrated in this manual. Thus it serves
both as an example of the format of indirect file input and as a brief
review of the monitor commands used to copy, process, and delete
files. In addition, one new command, DEASSIGN, is demonstrated.

Use the EDIT/CREATE monitor command to create a file called
INDCT.COM, inserting the commands according to the directions in
the right-hand column. When you.have finished creating the file, list
it and check for typing errors. Correct any errors you find and then
close the file using the EX editing command.

Long and Short Command Format

*IDA~rE 12-MAY--77 (RET)
IIME 0:OO:OO (RET)

LlAlL (RET) Print the date.

ASSION xx uL11. : (RET)

Enter a hypothetical date and time
(if your system has a clock).

Deassign all previous device assign-
ments and set new ones as follows:

Assign the logical name LP: to the
terminal.

Assign the device code of the stor-
age volume (xx) to the logical name
VOL:.

16-2

Using Indirect Files

List an abbreviated directory of
VOL:.

COF’Y UIIL.: Glif?F’l-I. 11)1-1 I>I:tRt+l. l”13k @ FORTRAN users insert this com-
mand to copy the FORTRAN
demo program to the system
volume.

COF’Y UllL:SlJM,MAC: SUM.Nhl.: (RET) MACRO users insert this command
to copy the MACRO demo program
to the system volume.

COPY Ul.lL:MAll:Ii.BA!.; N~ITI:II.~~IA!, (RET) BASIC users insert this command
to copy the BASIC demo program
to the system volume.

FORTRAN users who do not need
to load the language volume include
these commands to compile and
link the demo program.

MACli’L)/i. LS I /l::I,‘OSSliI!.I l.l<l. NI.:l-
L INh/MRIF’ !iUM @

SLJH <RET) All users assemble and link the
demo program.

FCLNRMlr Mh rl.:i-1. f!RS MA I C,, . MAP (RET: BASIC users simply rename the
demo program.

fiACliO/I I!i I /I;til~!~:l;lil-l~1. tilfNL.;l- WOW (RET1 All users assemble and link the

11Fl.k Tl--/Nl.)OlJI. ICY i;UM .X (RET) MACRO users delete the SUM files.

BASIC users delete the MATCH
file.

SPOOL file.

List a directory of .OBJ files.

FORTRAN users delete the
GRAPH files.

Deassign all device assignments.

If your system has a clock, print
the time to show how long total
processing took.

16-3

Using Indirect Files

EXECUTING AN
INDIRECT FILE

DATE 12-WY-77

'TIME: 8:OO:ov

DAlE

UE.ASSIGN

ASSlGN ‘IT: l.1”:

ASSTGN FiKl: vol..:

riIKE'C'IclttY/llf~ 1ii.F VOL.:

COPY ‘JOL: GllAF’I-I, F’OK GliAF’ti, FOR

COPY ‘JOL: SUM. MAC SUM, MAC:

COPY ‘JOL:MATCH.E~A:~; MAlcti.IcA!;

F’ORTRAN/LIST GliAF’H
LINK/MAP GRAF’H

MAcli’O/LIS’r/cl~OSSIIEFERENCL: SUM
I-INK/MAP SUM

RENAME MATCH * BAS i3An:;ti. MAf:

~ACf~O/L..IST/C:ROSSf)EI;EIIENCE SF’00L
LINWF’OREGROUNWMAF !;F’OOL.

IIIRECTOHY $. 0B.J

DELETE/NOOUERY GRAPH, $

DELE’IE./NCiUUERY MATCIH. MAP

LIEASSIGN

'TIME.

Now terminate the insert command
and list the indirect file to check
for errors. (Example input is shown
here.)

Close the file INDCT.COM.

Once you create an indirect file with the editor and check it for
errors, you are ready to start its execution. You can run an indirect
file under control of the single-job monitor or as the background job
under control of the foreground/background monitor. If you run an
indirect file in the background of a foreground/background system
while a foreground job is running however, you must take care to
avoid conflicts between nondirectory-structured devices of the two
jobs. For example, the jobs should not request the same magnetic
tape or cassette.

The command to start the execution of an indirect file is the At sign
(@) character followed by the appropriate file name (the file type
.COM is assumed unless you indicate otherwise). Execution starts
immediately and the system processes commands in the indirect file
in consecutive order. Each command is echoed on the terminal as it
is processed. If an error within the indirect file affects the processing
of a command, the system prints a system message on the terminal
and stops execution of the entire file. Therefore, it is particularly

16-4

Using Indirect Files

important that you check your indirect file for errors before you
start it and then leave the area. You can stop execution of an indirect
file at any time by typing two CTRL/Cs.

Run the indirect file that you have just created by typing:

It takes a minute or two for the commands in this file to be
processed and for the listings to print. If your system has a clock, the
time printed at the end of execution tells you exactly how long
command processing has taken. Following is an example run.

.@lNDC'I

.IlATE 13-MAY-77

. TIM 8:oo:oo

.llLASSIGN

.AS?;LGN IT: LF’:

.ASBJ.GN Rhl : VCJL:

,LIIF~L:CTUF~Y/RRTEF VOL :
IL’-Milr- 17

SLIM 1 MAC GRAFH .rnri !iP”OL . NAC MATCH .HAS
4 Fllrsr 13 Block5
4749 Free blocks

.COPY VOL:GKAF’H.FOh’ GKAF’H.I~OlR

.l:UPY V[3L:SU,,.MAC SllM.MAC

.COPY Vol. :MArCH.HAS MAI Cl-i.IlAS

.fURTRRN/ILIST Gh’AFM
I (3KrKAN IV ,,,u 12 -Mar-.77 OR:00:14 I’ALX 001

C GRAF’H. F(lR Vk:KSJLIN 1
c IHIS I-~JG~AM ~KODUCES 6 PLur 0~ rw TERMINAL
C OF AN FX’TERNAL FUNCIION. FIJN(X.Y)
C THE LIi,lTS Of‘ rME PI 01 ARE: IlETERMINE~l HY IME IlATA SrATEHENrS
c “S’rAH. IS FILL.L’Il WITH A TABLE OF HEIGHI P-LAGS
C ‘S7RINGa IS USED TO HUILII A LINE. OF tiRAf’H F-OR ~IIINTINO

OOO’L SCAL~ZHIN,ZMAXrHAXL.~~=ZMINtFLI~AT~k~-l~$~l~AX-ZtiIN~/FLUA7~MAXZ--1~
0002 l.OGICAL*I STRlNG(133).STAH(100)
0003 DATA XMIN,XMAX.MAXX/-J.Or5.0*45,’
0004 IlATA YMIN,YMAX,flAXY/-5.0.5.0.72/
0001’; IlN.4 FMIN,FMAx/O.O,I.O/
0006 CALL SCOF’Y(‘-- L 2 3 4 5 6 7 0 9 t’,GTAH)
0007 MAXF=LEN(STAH)
OOOEI II0 20 IX=l.MAXX
0009 X-SCAL(XMlN,XtlAX.MAXX,IX)
0010 CALL HEFEAT('*'rGTRING,MAXY)
0011 IF(IX.ER.l .OR. IX.EO.MAXX) GUlU 20
0013 DO 10 IY=2rMAXY-1
0014 Y=SCAL(YMIN~YMAX,MAXYIIY)
0015 IFUN=2tINT~FLOAT~MAXF-3~~~FUNo-FnIN~/~FMAX-FMIN~~
0016 10 STRING(IY)=STAH(MINO(MAXF,tlAXO~~rIFUN)))
0017 20 CALL PlJTSTR(7rSTRING,’ ‘)
0018 CALL kxI.r
OOIY END
.MAIN.
‘FFOR’rRAN-I- C.MALN. J Errors: 01 Warninss: 2
FORTRAN IV Storase “a~ for F~o9~am Ur,lt .,,AIN.

Local Varlahles, .PSECT OIlAlAr Size = 000470 (156. words)

Nall,e TYPP Offset N~lll~ Type OffS.?t. Name Trpe Offset
XHIN RN4 000352 XHAX FI*4 000356 MAXX I*? 000363
YMIN R*4 000364 YHAX R*4 000370 MAXY 1*2 000374
FMIN R*4 000376 F,,AX R*4 000402 ZilIN IF’*4 000416
ZMAX r+*4 000422 MAXZ 1*2 000426 K 1*2 000430
MAXF 1*2 000432 IX It2 000434 x R*4 000436
IY 1*2 000442 Y R*4 000444 IFUN 1*2 000450

L.0ca.I ard COMMON Arrars:

16-5

Using Indirect Files

Name Type Section Offset Size Dlnensions
STRING LSl SDATA 000000 000205 (67.1 (133)
STAB L$i 5UATA 000205 000144 (50.) (100)

Statement Functions and Processor-Defined Functions Referenced:

NdlWS Trre Name Tkll=e Name TYPf? Name Tkll=e Name TYre Name Trre
SCAL R$4 FLOAT fi*4

External SUBROUTINE OP FUNCTION Suh.-+ro$rams Referenced:

N?3l,e T&Ire NEUW2 T%=e NZJlM3 Type NaIlBe T%Pe NCSW T%lpe NEillIt? TYF@2
SCOPY R54 LEN I.52 REPEAT R54 INT 152 FUN R54 HINO 1*2
MAX0 I*2 PUTSTR R$4 EXIT R54
FORTRAN IV YO2.09 Thu 12-Mar-77 08:01:49 F’AGE 001

0001 FUNCTION FUN(X,Y)
0002 R=SQRT(X*XZ!tY552)
0003 FUN=(XtY*R*EXF(-A))$*2
0004 RETURN
0005 END
FUN
FORTRAN IV Storase Mar for Prosram Unit FUN

Local Varlahlesr .F’SECT *DATA, Size = 000024 (10. words)

Name Type Offset Name TYPe Offset NalW Type Offset
I-UN KS4 Env 000004 x R54 t? 000000 Y R*4 e 000002
R R*4 000010

External SUBROUTINE OP FUNCTION Suhrrasrams Referenced:

N2Ull~ Type Name T%=e Name TYPe Name T%!re N~lll~ Trpe Name TYPe
SQRT R*4 EXP R54

,LINK/MAP GRAPH
RT-I1 LINK Load Mar Thu l-7-Mar-77 08:02:25
GRAFH .SAV Title: .HAIN. Ident: FORYO-7

Section Addr Size Global Value Glohal

. ABS. 000000 001000 (RW.I,GHL,ARS,OVR)
SUSRSW 000000 5RF2Al
.VIR 000000 .VO14A
5sYsv5 000007 SWASIZ
*TRACE 004737

OTSSI 001000 017074 (RW,I,LCL,REL,CON)
SSOTSI 001000 SCVTIF
~bcvr~u 001014 cc15
BlC 001026 SID
0 1 ti 001043 EXF
MUFBMS 001472 HUFSIS
MIJFBSS 00152: 5Ml.R
nJI’*F’S 0022:!6 DIFBMS
5IIlVF 002250 IlIF$SS
AIiFSIG 002550 ADFBPS
GUF SMS 002566 ALlfSMS
QADrIt’ 002616 SSUHF
5SBR 002644 ADFSSS
AIlU5 002664 SOT1
55SEr 005046 IDlNT
nAX0 005370 MINO
5ISNrR 005444 LSNS
AGIBSS 005620 A[IIBSA
AJlIBlEl 005634 ADISIA
AIllCMtj 005650 AD15MA
SUIBS!j 005664 SUISSA
: ;u ‘1 5 .L s 005700 su15 rn
LGUlBHS 005/'14 SUIBMA
[I: I'B?i 005730 lCI$M
11.: 1 $A 00574? IlClBS

LILTBF 005756 Llcl*A
MC)F BSM 005776 MGF 5F;F’
I.-k. Ia* 006014 L.GT5
I.NL.5 006034 I.1 r5
nNn5 006046 EOVB
rSL5s OO60/‘3 TSLBM
r:iL*P 006110 RE78L
HETRI 006130 ,ir I5
HUL 5SS 006166 MQlSSM
MUIBIL; 006202 MQL *I!3
M01%1N 006206 Ml11 BIA
MIJIIMM 00627? MOIBMA
MO1 BOM 006136 MOISOA
MOIB1H 006294 MDISIA
NGI’I5S 006274 NIiF BS
NGF 5M 006306 NGDBt’
NGLlI,? 00631’6 NGFCA
CAL * 006.~40 MOIOIt’
tiI)l$F:‘F’ 006400 MOISMP
MUI 5PM 0064?2 MOISFA
r;or51r 006444 CMl5SS
l:MI5SM 006464 CMIBI!;
I.: ‘I 1 5 I M 006YOO CMIBMR
L:MI$MM 006514 , NMl$lM
131 115 006543 BE 05
NOE5 0065PJ4 llRA$
RLr5 006964 MIIFBRS

Value Global Value

000000 SHRDWR 000000
000001 SNLCHN 000006
000131 SLRECL 000210

001000 SCVTIC 001014
0010?6 CD15 001026
001026 CFIS 001042
001126 MUFSF’S 001466
001502 SMULF 001510
001532 sQRr 00203:!
003232 DIFSIS 002242
003262 SDVR OO>:‘/,;~
002556 SUF SF’S 0 0 2 5 6 :.’
003600 SUt *IS 00’610
00’263:’ SUF $SG 003644
002650 SADH 003650
003336 **orI 003340
005342 1NT 005342
005414 lSN$ 005440
005460 OLSNTR 00.5464
005624 AIlISSH 005630
005640 AGISIH 005644
005654 ADISHM 005660
005670 su15sM 005674
005704 LiUISlH 002710
005’710 LiVI*Hll 005724
005734 ICIBF 005740
005746 DCISM 005752
005760 MQFSSS 005764
006006 LLES 006012
006012 LGEB 006024
006036 lUR5 006042
006054 Xllli5 006056
006076 rsj. 5.1 006102
006116 REI5F OOhllll’
006132 MOIBS!; 006166
00617:’ MIJI$SA 006176
006:!01 KEL.9 006?0:!
00631: MOI5MG 006216
006226 MLJIBOS 006251
0 0 6 :! 4 2 MOIOlS 006246
006?62 EXI r 006270
006174 NGIIOM 006306
00632:’ NGFSP 0063222
006326 CAI$ 006332
006370 MGlSS! 006373
006404 MCIILF’S 006414
006430 MOISOF.’ 006436
006454 cnros L 006460
006470 CMIBII 0064/4
006504 CHIBMl 006510
006:r:!O NMl$l I 0 0 6 5 3 :!
006544 BGT5 006552
006556 HNEB 006562
006574 MGFBRH 006602

16-6

Using Indirect Files

MOF%RA
MOFIPS
MOF-5MF
M”F*PF
MULBMS
MOLBSF
MIJLOF’M
MCIL.$IM
STKbl
MOI5FiS
MOIBRF
55UTIS
S’JLBIM
SVLdMM
$l.:VTCB
BCVTIlI
CLCI
I: I t- 5
CILB
5 rvL
rvn5
‘6TVO
rvI5

L-kR5

006613
006634
006660
006676
006712
006732
006754
006774
007020
007040
007050
007060
007206 SVLISM
0072?7 SCVTFH
001242 5CVlcx
007242 CLC5
007254 CLDO
007264 (:LFB
007316 CLTB
007404 lVF5
007420 BlVIl
007426 rw*
007442 5rvI
007610 BEN0

MOFIRF
MOF$Mtl
MOFIPM
MULBSH
NOLBMtl
MOLBF’P
MOL5PS
tlOl.5IA
srii5I
MOLOkS
rlOI5RA
SAL5IM

006616
006640
006666
006703
006711
006740
006762
007003
007024
007040
007052
007200
007210
007’226
00724:
007254
007234
007264
00740?
0 0 7 4 1 2
007420
007434
007442
007622

MOFOMS
HCIFBMA
MOF $PA
MOLOSA
i-fOLOHA
MOL OMF
KOLBF’A
MUL5IF
STk5F
MCldRM
50, KS
SALBSM
SALBHM
OCVTFI
BCVTIlH
CID5
5111
%k’C
rw B
5TVf
TVOI
OrVF
ENOB
5kRH

006622
006653
006672
006706
006736
006744
006766
00701 0
00703O
007044
007O56
oO7:!O?
007216
0072:‘6
001:!4:’
007?54
001254
007264
007404
007412
0014:!6
007434
0013,/‘6
007640

II’W5 007662 51F w 007666 IFW55 007730
$CHhEk 010000 5 IIIEXI 010034 5EOL 01 0052
FOLf 010054 5urw 010170 SIF’B 01017A
5Si’w 010176 FO135 01020 BEXI7 010?1’?
!3AL$IP 010346 SAL 5SF 010350 SVLBlF’ 01.03:i4
SVLBSF 010356 SAL5MF’ 010364 SVLm$Mt’ 010370
OEKKTH 010374 QtlRliS 01050 L 5VlNll 014134
SAVkG5 014136 r HkD5 014304 5f’lJ rhl 014306
5Gbxu. 014Slh PEOFIL 014707 * c cl F I’ 014/lh
5F:‘UTkE 0 L4736 5wA1 r 0 15 16 6 BFCHNL 015330
5INIlf 015326 BCLOSL- 015440 OF10 0166:L:’
BOFIO 016616 5DIIMPL 01 /746

OTSSP 020074 000050 (~W~LI.L~HL~REL.,OVR)
SYSOI 020144 00011:’ (RW,~~LCLI~EIL,CON)

LEN 020144 kf’PE‘A1 0:.201 6:’ SCIIFY 0?0.100
USEk5I 020356 000000 (RW, [rLCLrt?bLrCON)
%COOE 020356 001316 (tiW,I.LCL..REL.CUN)

55OTBC O?O.J:?6 FUN 031 :‘.J4 F’ 1, r !i 7 H 0:11402
us50 031674 001016 (RW,I,L.CL,RCl..rCON)

%$ClrSO 021674 $OF’tN o:!lbl4
sys*o 013713 000000 (kW.I,LCLrRtL,CON)
BDATAP 022712 000106 (RW,DrLCl-rRELrCON)
OTSSD 023020 000006 (RWID.LCL.,IF’EL .CON)
OTSBS 013026 000002 (RW.D,LI:LrkCLrCON)

%AcJTS 033026
SYS$S 023030 000004 ~kW,~lrLCLrkLL.rC~IN~

BSYSLti 033O.JO $LOCh 0?3032 LCKASH OL’3033
5IlATA 023034 000536 (kW.IIrLCLrHELrCON)
USEHI 023572 000000 (RW.Lf,LCL.HE.L.CON)
.$$P5. 02357:’ QoaoOO (RW.D,GHLI~EL.,OVR)

TransPer address = 020356~ Hirh limit = 02.3272 = 5O!j3+ words

.MACKO/LIST/CKOSSkEFEkENCE SUM

SU,,.MAC VERSION 1 MACk’C ‘JO3.00 l?-MAY-77 00:07:29 F‘AGE 1

1 .TITLE SUM.“~C VERSION 1

16-3

Using Indirect Files

Using Indirect Files

. . .cno

.,,CI(l

. . .cw

16-9

Using Indirect Files

SUMMARY:
COMMAND
TO START
AN INDIRECT FILE

FILE
MAINTENANCE

REFERENCE

. L.INK/F’0111_011011NCl/M~~ SF’OOL
RT-11 L.INK Load Mi3P .Thu 12-Mew--77 08:ll:OY
SPOOL . FIEL.. T i t 1 e : CEMOSF Iderft : x01.01

Section Addr Size GlOhi31 Value GlCJhi3l UJlUe Global Value

. ABS, 000000 001000 (HW,I:,GHLIAHS,OVR)
001000 010036 (t?WrIvLCLrKLrCON)

'Transfer ,czddress = 001036, Hi& limit = 011036 = 231'17. words

.!JIRE:CTOt?Y # .OH.J
1 I? .- pf i?J y -]-y

GRAF’H . OH.J 16 12-Mir3v--77 SUM .OHJ 1 12-Mar-77
SF’GOL . OHJ 2 12--Mar..7-y SYSLIH.OHJ 198 23-Jun-77
MUHRTE:. 0Ij.J 1 ()4.-pjar...y7 MUHTAH.OHJ 1 04-Mar-77
MUBZNl . C1H.J 1 04-Nar~- 77 HUHETl.OHJ 1 04-Mar-77
MUHXTI .OH.J 1 04 Ma&J y-7 MUNZi . IIHJ 1 04-Mar-77
MUBSID.ORJ I 04-Mad-77 FORLIH.0H.I 1.5’7 L’6.-A~,...-‘77

20 F.ilesr 611 Blocks
564 Free h:lock.s

.DE:l..E’TE~/NL:lC)IJERY GRAPH.*

. JK.LETE/NOOUERY SUM, *

. DELETE/NOOlIERY MATCH, MAF

@filnam.COM
Start the execution of the specified indirect fiie (filnam.COM).

CTRL/C CTRL/C
Halt execution of the indirect command file (use with caution).

This indirect file contains commands that perform the appropriate
copy and delete file maintenance operations. If the commands were
not already part of the file, you would need to perform the
appropriate file maintenance commands, in monitor command mode,
after execution.

RT-11 System User’s Guide (DEC-1 I-ORGDA-A-D), Maynard, Mass.: Digital
Equipment Corporation, 1977.

A guide to the use of the RT-11 operating system. See Chapter 4.

16-10

CHAPTER 17

ADVICE TO NEW USERS

This manual introduces you to several common RT-I 1 functions but
is neither exhaustive nor comprehensive in its treatment of system
features, commands. or their options. For many, these fundamental
system operations are sufficient; other users, however, may need or
want to learn a programming language, extended system features, or
the internal workings of the RT-11 system. These people should
consult the references at the end of each chapter, the RT-I1
Documentation Directory, or the RT-11 System User’s Guide. The
RT-II Documentation Directory lists all RT-1 l-related material
available from DIGITAL: the User’s Guide explains in detail each
comma.nd contained in this manual and additional monitor com-
mands, including all possible command options.

The Introduction to RT-11 has shown you the right way to use some
important system features and their associated monitor commands.
This information, combined with the following basic guidelines for
using the system, can help you to avoid pitfalls common to new
users:

Do not becom.e dependent on a single copy of a file.
Always make a backup copy of any useful file.

When using the editor, do not insert text in large segments.
Divide long editing sessions into short ones so that user (or
hardware) errors do not cost long hours of editing. Close
the file with the EX command and begin editing again
from where you left off.

Avoid careless use of wildcard operations that manipulate
multiple files. Use the /QUERY option to verify the
operation to be performed.

When using indirect files or BATCH streams, avoid
operations that manipulate any of the system (.SYS) files
or the indirect file in use. Check the indirect file carefully
for errors before you use it. Once the command stream is
initiated, you may be unable to detect and prevent
possibly serious errors.

17-1

Advice to New Users

0 If you run two jobs under control of the foreground/
background monitor, be sure there is no conflict of
nondirectory-structured devices (LP:, MT:, CT:, PC:,
TT:) used by the two jobs.

17-2

APPENDIX A

MANUAL BOOTSTRAPPING OPERATIONS

This appendix describes the manual bootstrapping procedures used
for PDP-11 computers that do not have the automatic bootstrapping
capability described in Chapter 2. Three categories are covered:

Typing the Bootstrapping on the Terminal Keyboard

Using a Pushbutton Console to Bootstrap

Using a Switch Register Console to Bootstrap

The bootstrap for your RT-11 computer system consists of a series
of 6-digit numbers that you must type on the terminal keyboard.
First, obtain the bootstrap from the RT-11 System Generation
Manual and copy the numbers into the space below:

Now, type each number in the column on your terminal keyboard
using the following method (if you make a mistake, type the
DELETE key on the terminal keyboard once for each typing error
and then retype the digit(s)):

1. Type001000

2. Type slash (/)

3. Type the first number in the bootstrap column

4. Type the LINE FEED key on the keyboard

TYPING THE
BOOTSTRAP ON

THE TERMINAL
KEYBOARD

5. Type the next number in the bootstrap column

A-l

Manual Bootstrapping Operations

6.

7.

8.

9.

USING A
PUSHBUTTON
CONSOLE TO
BOOTSTRAP

Repeat steps 4 and 5 until you have typed all the num-
bers in the column

Type the RETURN key on the keyboard

Type 1OOOG

Continue to Step 11 in Chapter 2

If your computer has a pushbutton console on its front panel similar
to that shown in Figure A-l, you can use the buttons to manually
give the computer the information it needs to bootstrap the system.

Figure A-l Pushbutton Console

The bootstrap for your RT-11 computer system consists of a series
of 6-digit numbers which you must load into the computer using the
push-button console. First, obtain the bootstrap of your system
device from the RT-11 System Generation Manual and copy the
numbers into the space provided below. If your system has a
hardware bootstrap1 , the bootstrap will consist of only two numbers
which you should copy into the left-hand space; otherwise, the
bootstrap will consist of two columns of numbers labeled Location
and Contents which you should copy into the right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =
Start Address =

1 A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a 6-digit number.

A-2

Manual Bootstrapping Operations

To activate the hardware bootstrap, set the numbers into the
pushbuttons using the following method (if you make a mistake,
push the button labeled CLR, then reenter the number):

1. Push the appropriate buttons for the load address (read the
number from left to right)

2. Push LAD

3. Push the appropriate buttons for the start address (read
the number from left to right)

4. Push the button labeled CNTRL and while holding it
down, push the button labeled START

5. Continue to step 11 in Chapter 2

To activate other bootstraps, set the numbers into the pushbuttons
using the following method (if you make a mistake, push the button
labeled CLR, then reenter the number):

1. Push 1000 (read the number from left to right)

2. Push LAD

3. Push the appropriate buttons for the first number in the
Contents column (read the number from left to right)

4. Push DEP; push CLR

5. Push the appropriate buttons for the next number in the
Contents column (read the number from left to right)

6. Repeat steps 4 and 5 until all numbers in the column have
been used

7. Push 1000

8. Push LAD

9. Push the button labeled CNTRL and while holding it down
push the button labeled START

10. Continue to step 11 in Chapter 2

A-3

Manual Bootstrapping Operations

USING A SWITCH If your computer has a switch register console on the front panel
REGISTER similar to those shown in Figure A-2, you can use the switches to
CONSOLE TO manually give the computer the bootstrapping information it needs

BOOTSTRAP to start the system.

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means that
the switch moves in only one direction and returns to its initial
position after you use it. You must set the remaining switches either
up or down as instructed.

The bootstrap for your RT-11 computer system consists of a series
of 6-digit numbers which you must load into the computer using the
switch register console. First, obtain the bootstrap of your system
device from the RT-11 System Generation Manual and copy the
numbers into the space provided below. If your system has a
hardware bootstrap’, the bootstrap consists of only two numbers,
which you should copy into the left-hand space; otherwise, the
bootstrap consists of two columns of numbers labeled Location and
Contents which you should copy into the right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =
Start Address =

Next convert the numbers in the column to binary numbers using the
conversion process shown in Table A- 1.

1 A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a 6-digit number.

A-4

Manual Bootstrapping Operations

Table A-l Binary Conversion

Octal Binary

0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111

For example, the number 173 100 is converted to 001 111 011 001
000 000. You set this 1 &digit binary number into the switch register
by placing each individual switch in an up position for a 1 or a down
position for a 0. The number 173 100 is set into the switch register as
follows:

The number 012700 is converted to 000 001 010 111 000 000 and is
set into the switch register as follows:

NOTE

The switch register is the group of switches appearing on
the left of the console. Your switch register may have only
16 switches rather than 18; in this case you can ignore the
lefthand two digits of the binary number when you set the
switches.

To activate the hardware bootstrap:

1. Set the switch register to the appropriate positions for the
load address

2. Press the spring-loaded LOAD ADDR switch

A-5

Manual Bootstrapping Operations

3.

4.

5.

Set the switch register to the appropriate positions for the
start address

Press the spring-loaded START switch

Continue to step 11 in Chapter 2

To activate other bootstraps, set the numbers into the switch register
using the following method:

1. Set the switch register to the appropriate positions for the
number 00 1000

2.

3.

Press the spring-loaded LOAD ADDR switch

Set the switch register to the appropriate positions for the
first number in the Contents column

4.

5.

Press the spring-loaded DEP switch

Set the switch register to the appropriate positions for the
next number in the Contents column

6. Repeat steps 4 and 5 until all the numbers in the column
have been used

7. Set the switch register to the appropriate positions for the
number 00 1000

8. Press the spring-loaded LOAD ADDR switch

9. Press the spring-loaded START switch

10. Continue to step 11 in Chapter 2

A-6

APPENDIX B

SELECTED SYSTEM TOPICS

The remarks in this appendix cover a variety of topics that should
prove helpful to you as you perform the demonstrations in the
manual. Included, for example, are ins_tructions for starting and
stopping the system, alternate methods for performing some system
operations, and directions for using the language volume. The
sections are listed here in the order in which they are referenced
from within the text of the manual.

You can plan to take a break at the end of any individual chapter in
this manual. If you intend to beaway from the computer system for
any length of time, you should halt the system and remove your
belongings so that others may use the system hardware.

Perform the following steps in order:

1. Stop the computer. Press HALT switch if your computer
operator’s console has switches; hold the CNTRL button
down and push the HLT/SS button if your computer
operator’s console has pushbuttons.

2. Unload the system volume. Turn the device unit to an
off-line condition and remove the system volume.

3. Unload the storage volume. Turn the device unit to an
off-line condition and remove the storage volume.

4. Remove and save all terminal and line printer output
listings.

Perform the following steps in order:

1. Follow the bootstrap procedure in Chapter 2.

2. Enter the current date and time-of-day (Chapter 4).

STOPPING AND
STARTING THE

SYSTEM

Stopping the
System

Starting the
System

B-l

Selected System Topics

3. Make any necessary logical device assignments. For the
examples in this manual, you must assign the logical name
VOL: to your storage volume (Chapter 4).

THE SYSTEM If for any reason the computer system stops unexpectedly, request

STOPS help from an experienced user. Once the problem is diagnosed, start

UNEXPECTEDLY the system by following the procedure above.

SUGGESTIONS
FOR
BOOTSTRAPPING
THE SYSTEM

You must be able to bootstrap your RT-11 system before you can
perform the demonstrations in this manual. Three common boot-
strapping problems and suggestions for their correction are described
below.

1. You cannot locate the bootstrapping information provided
by the DIGITAL representative who installed your system.

First, if an experienced RT-11 user is available to help
you, ask this person to fill in the missing information in
the RT-11 System Generation Manual. Then retry the
bootstrap procedures in Chapter 2 of this manual.

If no one is available to help you, consult the appropriate
hardware manuals for the devices that are part of your
system; these manuals provide a description of the device
and operating procedures. Read the system build and
start operations that are outlined in the RT-11 System
Generation Manual. Then try the bootstrap procedures in
Chapter 2 again.

2. You have followed the bootstrapping instructions cor-
rectly but your system printed a message other than what
you expected.

a. If the message is one of the following:

?BOO’T-F-X/O error

?EOOT-F-No tncmit,or Pile on valcrme

it is a bootstrap error message and indicates that a
problem in the system is preventing bootstrapping.
These four messages are fully explained in the R T-l 1

B-2

Selected System Topics

System Message Manual, but you should not attempt
to correct the problem yourself if an experienced user
is available to help.

b. If the message is one of the following:

I:;: ‘T j, 11. x pj v 0 3 -. :.: x

a valid RT-11 V3 monitor program has been boot-
strapped, but it is not the one you should be using.
Reboot the correct monitor program by typing the
following commands on the terminal (sy is the
appropriate 2-character code for your system
volume - see question 3b in the Hardware Configura-
tion section of Chapter 2); (RET) indicates that
you should type the RETURN key on your terminal
keyboard:

C. Any other message indicates that an old version of
RT-11 (Vl, V2, V2B, V2C) has been bootstrapped.
Only Version 3 and later releases of RT-11 can be
used to perform the demonstrations in this manual.

3. You followed the bootstrapping instructions correctly but
nothing happened, i.e., there was no terminal response at
all.

Retry the bootstrap procedure from the beginning. Before
you begin, be sure that the system volume is properly
mounted in device unit 0. Check that the computer is on
but is not running (the light labeled RUN should not be
lit); if it is running, stop it as described above. Check that
the terminal is on-line and that its baud rate switch (if
present) is set to 300. If you are using a display, be sure
the screen is bright enough. If your terminal uses a paper
printer, be sure that the paper is properly loaded.

A copy of the system volume should have been made during system
installation. This copy is called the master copy and should be stored
away for safekeeping. If you cannot locate a master copy for your
system volume, make one before you continue. Backup instructions
are in the RT-11 System Generation Manual and should be per-
formed by an experienced user.

BACKING UP THE
SYSTEM VOLUME

B-3

Selected System Topics

DIRECTORY VS
NONDIRECTORY-
STRUCTURED
VOLUMES

Storage volumes are called file-structured volumes because they are
capable of physically storing files. They can be further categorized
as directory-structured and nondirectory-structured volumes based
on their method of directory information storage, collection, and
printing.

The directory information kept on a volume includes file names and
file types, dates of creation, and (in most cases) file lengths. When
you type the DIRECTORY command, this directory information
prints on the terminal. Volumes such as disk, diskette, and DECtape
keep this information in a single place at the beginning of the
volume. Each time you add or erase a file, the directory information
at the beginning of the volume is updated accordingly. Thus, these
volumes have a true volume directory and are said to be directory-
structured. Magtape and cassette volumes, on the other hand, do not
keep directory information in any single place on the tape but rather
with each individual file. Their directory information is obtained by
sequentially reading through all the files on the tape and collecting
the directory for printing as each file is encountered. Thus, these
volumes are said to be nondirectory-structured.

You can list the volume directories in either a complete or an
abbreviated format. Complete volume directories include the file
name, tile type, file length (usually), and date of creation if you
entered a date via the DATE command before creation. For most
volumes, the directory format is as follows:

08-JUL-77
FILE .TYP 26 23-JUN-77

Cassette directories are slightly different. Their directories do not
indicate file lengths, but instead show a sequence number for each
file :

08-JUL-77
FILE .TYP 0 23-JUN-‘77

The sequence number simply indicates whether the tile is continued
from another cassette. 0 means the file is not continued from an-
other cassette while any other number indicates that the tile is con-
tinued. The number of blocks printed at the end of a cassette
directory does not represent the total size of the files on the volume,
but instead represents the total of the sequence numbers.

B-4

Selected Sys tern Topics

Abbreviated volume directories are handled the same for all
directory-structured and nondirectory-structured volumes; they
include only the file name and file type, and are printed in five
columns on the terminal. For more information about directory-
structured and nondirectory-structured volumes, see the R T-l I
System User’s Guide, Chapter 3.

Because of the sequential (nondirectory-structured) nature of
magtapes and cassettes, you cannot use the RENAME monitor
command. To perform the RENAME operation, you must first copy
the file using the new file name and then erase the old file name.

Thus, to change the name of GRAPH.TWO on your magtape or
cassette storage volume to GRAPH.FOR, first make a copy of
GRAPH.TWO, giving the new file the name GRAPH.FOR:

Long Command Format

l COF’Y @a

From’? UUL:GHAPH.TWO(RET)
Tt3 ? [;RAPH.FOR@

Short Command Format

. COE’Y VOL. : GRAPH + TWO GRAPH + F’OR (RET)

Now there are two copies of the GRAPH file. Erase the one not
wanted using the monitor DELETE command (this command is
described in Chapter 7 in the section entitled “File Delete
Operations.“) :

Long Command Format

ii D les? 1:: L 1:: 7’ EL / N 0 0 11 I!: R Y (RET)
VIII...: GRAPH + ‘TWO (RET)

Short Command Format

ALTERNATE
RENAME

OPERATION FOR
MAGTAPE AND

CASSETTE
USERS

, ~I~L~T~:/N~~:~~JE~IY VOL..: C4FtAF:‘I-l + TWCI (RET)

B-5

Selected System Topics

USING THE
FORTRAN/BASIC
LANGUAGE
VOLUME

A single copy of GRAPH.FOR now resides on your default storage
(system) volume. Copy the file onto your MT: or CT: storage
volume :

Long Command Format

.COF’Y (RET)
F rmi? GRAF’H + FOR (RET)
Tc7 ? UOL.. : GRAI-‘Ii + FOR (RET)

Short Command Format

, COPY GRAF’H + FOR uo1...: GRAF’H * FOR (RET)

Delete the original file:

Long Command Format

Short Command Format

The combined effect of these four commands is to “rename”
GRAPH.TWO to GRAPH.FOR.

During system installation, a special system volume was created
specifically for your use with this manual. This volume contains
the FORTRAN and/or BASIC language processors and the necessary
monitor files required to use these language processors. Before you
can perform the FORTRAN or BASIC demonstrations, you must
substitute this FORTRAN/BASIC language volume for the system
volume that is currently mounted in device unit 0. The language
volume then becomes, and is used like, the system volume during the
course of the FORTRAN and BASIC demonstrations.

Make sure no system operations are in progress (the monitor prompt-
ing period should appear at the left margin of the terminal printer)
and stop the system (see “Stopping and Starting the System”, this
appendix). Now remove the system volume currently loaded in

B-6

Selected System Topics

device unit 0 and insert the language volume, write-protected. Boot-
strap the system (see “Stopping and Starting the System”, this
appendix). The following monitor message should appear:

RY-.I. 1 S..J 0 () j ..- >.; ;.:

Write-enable the volume. Then enter the current date and time-of-
day and assign the logical name VOL: to your storage volume, just
as you did in Chapter 4. When you have done this, you are ready to
run the language demonstration. Return to the main text of the
manual.

Diskette users and FORTRAN users who have the FORTRAN
language processor on a volume apart from their system volume must
occasionally perform the kinds of file copying and volume swapping
operations described below. These operations are necessary when
the files you need to use are not stored on the volume(s) currently
mounted. The situation requires that you make the appropriate
volume substitutions before you continue.

Thus, before you can compile the FORTRAN file THIRD.FOR, you
must substitute the language volume containing the FORTRAN com-
piler for the system volume currently loaded in device unit 0. How-
ever, first you must copy the file THIRD.FOR to your storage
volume so that it will be available to use.

Long Command Format

Short Command Format

+ C: (1 l::“u’ ‘r’ 1.4 1: F7 11 , I::- (:) Ii ‘J I:) I,.. : ‘T’ I-1 :I: 17][:I + F- (:) F< (RET)

Stop the system, remove the system volume currently loaded in
unit 0, and insert the language volume write-protected. See “Stop-
ping and Starting the System” (this appendix) if necessary. The
following message should appear when you bootstrap the language
volume.

SUBSTITUTING
VOLUMES

DURING
OPERATIONS

I? Y - I. 1 :i ..J u 0 3 ..- x :.:

B-7

Selected System Topics

Write-enable the volume. Then enter the current date and time-of-
day and assign the logical name VOL: to your storage volume, just as
you did in Chapter 4.

Next compile the FORTRAN program THIRD.FOR, which is now
on VOL:

Long Command Format

FORTRAN (RET)
;iXcs? ?rC)L:Tti:CRi:I+F:OR(R
F’IJTSTR

Short Command Format

FORTRAN UOL : THIRD a
;g”TSTR

This command causes the object module to be created on the default
storage volume (DK:) which is presently the system volume (i.e., the
language volume). If errors occur during the compile operation, they
indicate that you have incorrectly typed the source file. In this case,
you must edit the tile THIRD.FOR, recompile, and then copy the
fde to VOL:. Once you have an object module that compiles without
error and is stored on VOL:, reload the main system volume in
unit 0. Again, follow the directions in “Stopping and Starting the
System”. Once you have bootstrapped the volume, write-enable the
system volume, enter the current date and time-of-day, and assign
the logical name VOL: to your storage volume.

Now copy the object module on VOL: back to the system volume.

Long Command Format

I--0py (RET)
;roln? VOL : T 14 I Ii D + OIE{..J (REn
To ? ‘~H:Cl?D+OlEcJ (RET)

Short Command Format

. COPY VOL.: THIRKl t CJBJ THII?ICI t OE,J (RET)

Return to Chapter 13 to the section entitled “Building the Object
Library.”

B-8

GLOSSARY

Absolute address
The binary number that is assigned as the address of a physical
memory storage location.

Absolute section
The portion of a program in which the programmer has
specified physical memory locations of data items.

Access time
The interval between the instant at which data is required from
or for a storage device and the instant at which the data actually
begins moving to or from the device.

ADC (Analog to Digital converter)
A circuit which converts analog signals to binary data.

Address
A label, name or number that designates a location in memory
where information is stored.

Algorithm
A prescribed set of well-defined rules or processes for the
solution of a problem in a finite number of steps.

Alphanumeric
Referring to the subset of ASCII characters that includes the 26
alphabetic characters and the 10 numeric characters.

ANSI
American National Standards Institute.

APL (A Programming Language)
A condensed, high-level language capable of describing complex
information processing in convenient notation. It uses arrays as
basic data elements and manipulates them with a set of
powerful operators. Statements are usually interpreted during
execution and require no compilation whatsoever.

Application program (or package)
A program that performs a function specific to a particular
end-user’s (or class of end-user’s) needs. An application program
can be any program that is not part of the basic operating
system.

Glossary- 1

Glossary

Argument
A variable or constant value supplied with a command that
controls its action, specifically its location, direction, or range.

Array
An ordered arrangement of subscripted variables.

ASCII
The American Standard Code for Information Interchange; a
standard code using a coded character set consisting of 8-bit
coded characters for upper and lower case letters, numbers,
punctuation and special communication control characters.

Assembler
A program that translates symbolic source code into machine
instructions by replacing symbolic operation codes with binary
operation codes and symbolic addresses with absolute or
relocatable addresses.

Assembly language
A symbolic programming language that normally can be
translated directly into machine language instructions and is,
therefore, specific to a given computing system.

Assembly listing
A listing, produced by an assembler, that shows the symbolic
code written by a programmer next to a representation of the
actual machine instructions generated.

Asynchronous
Pertaining to an event triggered by the occurrence of an un-
related event rather than “synchronous” or related operations
scheduled by time intervals.

Background program
A program operating automatically, at a low priority, when a
higher priority (foreground) program is not using system
resources.

Backup file
A copy of a file created for protection in case the primary file is
unintentionally lost or destroyed.

Base address
An address used as the basis for computing the value of some
other relative address; the address of the first location of a
program or data area.

BASIC (Beginner’s All-purpose Symbolic Instruction Code)
An interactive, “algebraic” type of computer language that
combines English words and decimal numbers. It is a widely
available, standardized, simple beginner’s language capable of
handling industry and business applications.

Glossary-2

Glossary

Batch processing
A processing method in which programs are run consecutively
without operator intervention.

Baud
A unit of signaling speed (one bit per second).

Binary
The number system with a base of two used by internal logic of
all digital computers.

Binary code
A code that uses two distinct characters, usually the numbers 0
and 1.

Bit
A binary digit. The smallest unit of information in a binary
system of notation. It corresponds to a 1 or 0 and one digit
position in a physical memory word.

Block
A group of physically adjacent words or bytes of a specified size
that is peculiar to a device. The smallest system-addressable
segment on a mass-storage device in reference to I/O.

Bootstrap
A technique or routine whose first instructions are sufficient to
load the remainder of itself and start a complex system of
programs.

BOT (Beginning of Tape)
A reflective marker applied to the backside of magtape which
identifies the beginning of the magtape’s recordable surface.

Bottom address
The lowest memory address into which a program is loaded.

Breakpoint
A location at which program operation is suspended to allow
operator investigation.

Buffer
A storage area used to temporarily hold information being
transferred between two devices or between a device and
memory. A buffer is often a special register or a designated area
of memory.

A flaw in the design or implementation of a program which may
cause erroneous results.

Glossary-3

Glossary

Bus
A circuit used as a power supply or data exchange line between
two or more devices.

Byte
The smallest memory-addressable unit of information. In a
PDP-11 computer system, a byte is equivalent to eight bits.

Call
A transfer from one part of a program to another with the
ability to return to the original program at the point of the call.

Calling sequence
A specified arrangement of instructions and data necessary to
pass parameters and control to a given subroutine.

Central processing unit (CPU)
A unit of a computer that includes the circuits controlling the
interpretation and execution of instructions.

Character
A single letter, numeral, or symbol used to represent
information.

Character pointer
The place where the next character typed will be entered. (The
character pointer is visible as a blinking cursor on VT-l 1 display
hardware.) During editing, the character pointer indicates the
place in an ASCII text file where the next character typed will
be entered into the file.

Clear
To erase the contents of a storage location by replacing the
contents, normally with OS or spaces.

Clock
A device that generates regular periodic signals for
synchronization.

Code
A system of symbols and rules used for representing informa-
tion - usually refers to instructions executed by computer.

Coding
To write instructions for a computer using symbols meaningful
to the computer itself or to an assembler, compiler or other
language processor.

Glossary-4

Command
A word, mnemonic, or character, which, by virtue of its syntax
in a line of input, causes a computer system to perform a
predefined operation.

Command language
The vocabulary used by a program or set of programs that
directs the computer system to perform predefined operations.

Command language interpreter
The program that translates a predefined set of commands into
instructions that a computer system can interpret.

Command string
A line of input to a computer system that generally includes a
command, one or more file specifications, and optional
qualifiers.

Compile
To produce binary code from symbolic instructions written in a
high-level source language.

Compiler
A program that translates a high-level source language into a
language suitable for a particular machine.

Computer
A machine that can be programmed to execute a repertoire of
instructions. Programs must be stored in the machine before
they can be executed.

Computer program
A plan or routine for solving a problem on a computer.

Computer system
A data processing system that consists of hardware devices,
software programs, and documentation that describes the
operation of the system.

Concatenation
The joining of two strings of characters to produce a longer
string.

Conditional assembly
The assembly of certain parts of a symbolic program only when
certain conditions are met during the assembly process.

Configuration
A particular selection of hardware devices or software routines
or programs that function together.

Glossary-5

Glossary

Console terminal
A keyboard terminal that acts as the primary interface between
the computer operator and the computer system. It is used to
initiate and direct overall system operation through software
running on the computer.

Constant
A value that remains the same throughout a distinct operation.
(Compare with Variable.)

Context switching
The saving of key registers and other memory areas prior to
switching between jobs with different modes of execution, as in
background/foreground programming.

Conversational
See Interactive.

CPU
See central processing unit.

Crash
A hardware crash is the complete failure of a particular device,
sometimes affecting the operation of an entire computer
system. A software crash is the complete failure of an operating
system usually characterized by some failure in the system’s
protection mechanisms or flaw in the executing software.

Create
To open, write data to, and close a file for the first time

Cross reference listing
A printed listing that identifies all references in a program to
each specific symbol in a program. It includes a list of all
symbols used in a source program and the statements where
they are defined or used.

Current location counter
A counter kept by an assembler to determine the address
assigned to an instruction or constant being assembled.

Data
A term used to denote any or all facts, numbers, letters, and
symbols. Basic elements of information that can be processed
by a computer.

Data base
An organized collection of interrelated data items that allows
one or more applications to process the items without regard to
physical storage locations.

Glossary-6

Glossary

Data collection
The act of bringing data from one or more points to a central
point for eventual processing.

Debug
To detect, locate, and correct coding or logic errors in a
computer program.

Default
The value of an argument, operand, or field assumed by a
program if not specifically supplied by the user.

Define
To assign a value to a variable or constant.

Delimiter
A character that separates, terminates, or organizes elements of
a character string, statement, or program.

Device
A hardware unit such as an I/O peripheral, magnetic tape drive,
card reader, etc. Often used erroneously to mean “volume”.

Device control unit
A hardware unit that electronically supervises one or more of
the same type of devices. It acts as the link between the
computer and the I/O devices.

Device handler
A routine that drives or services an I/O device and controls the
physical hardware activities on the device.

Device independence
The ability to program I/O operations independently of the
device for which the I/O is intended.

Device name
A unique name that identifies each device unit on a system. It
usually consists of a 2-character device mnemonic followed by
an optional device unit number and a colon. For example, the
common device name for RK0.5 disk drive unit 1 is “RK 1:“.

Device unit
One of a set of similar peripheral devices (e.g., disk unit 0,
DECtape unit 1, etc.). May be used synonymously with volume.

Diagnostics
Pertaining to a set of procedures for the detection and isolation
of a malfunction or mistake.

Glossary-7

Glossary

Digit
A character used to represent one of the non-negative integers
smaller than the radix (e.g., in decimal notation, one of the
characters 0 to 9; in octal notation, one of the characters 0 to 7;
in binary notation, one of the characters 0 and 1).

Direct access
See Random access.

Directive
Assembler directives are mnemonics in an assembly language
source program that are recognized by the assembler as
commands to control a specific assembly process.

Directory
A table that contains the names of and pointers to files on a
mass-storage volume.

Directory-structured
Refers to a storage volume with a true volume directory at its
beginning that contains information (file name, file type,
length, and date-of-creation) about all the files on the volume.
Such volumes include all disks, diskettes, and DECtapes.

Disk device
An auxiliary storage device on which information can be read or
written.

Display
A peripheral device used to portray data graphically (normally
refers to some type of cathode-ray tube system).

Downtime
The time interval during which a device or system is inoperative.

Echo
The printing by an I/O device, such as terminal or CRT, of
characters typed by the programmer.

Edit
To arrange and/or modify the format of data (e.g., to insert or
delete characters).

Editor
A program that interacts with the user to enter text into the
computer and edit it. Editors are language independent and will
edit anything in character representation.

Effective address
The address actually used in the execution of a computer
instruction.

Glossary-8

Glossary

Emulator
A hardware device that permits a program written for a specific
computer system to be run on a different type of computer
system.

Entry point
A location in a subroutine to which program control is
transferred when the subroutine is called.

EOT (End Of Tape)
A reflective marker applied to the backside of magtape which
precedes the end of the reel.

Error
Any discrepancy between a computed, observed, or measured
quantity and the true, specified, or theoretically correct value
or condition.

Execute
To carry out an instruction or run a program on the computer.

Expression
A combination of operands and operators that can be evaluated
to a distinct result by a computing system.

Extension
Historically-used synonym for file type.

External storage
A storage medium other than main memory, e.g., a disk or tape.

Field
A specified area of a record used for a particular category of
data.

FIFO (first in/first out)
A data manipulation method in which the first item stored is
the first item processed.

File
A logical collection of data treated as a unit, which occupies
one or more blocks on a mass-storage volume such as disk or
magtape, and has an associated file name (and file type).

File maintenance
The activity of keeping a mass-storage volume and its directory
up to date by adding, changing, or deleting files.

File name
The alphanumeric character string assigned by a user to identify
a file. It can be read by both an operating system and a user. A

Glossary-9

Glossary

file name has a fixed maximum length that is system dependent.
(The maximum in an RT-11 operating system is six characters,
the first of which must be alphabetic. Spaces are not allowed.)

File type
The alphanumeric character string assigned to a file either by an
operating system or a user. It can be read by both the operating
system and the user. System-recognizable file types are used to
identify files having the same format or type. If present in a file
specification, a file type follows the file name in a file
specification, separated from the file name by a period. A file
type has a fixed maximum length that is system dependent.
(The maximum in an RT-11 operating system is three charac-
ters, excluding the preceding period and not including any
spaces.)

File specification
A name that uniquely identifies a file maintained in any
operating system. A file specification generally consists of at
least three components: a device name identifying the volume
on which the file is stored, a file name, and a file type.

File-structured device
A device on which data is organized into files. The device
usually contains a directory of the files stored on the volume.
(For example, a disk is a file-structured device, but a line printer
is not.)

Flag
A variable or register used to record the status of a program or
device; the noting of errors by a translating program.

Floating point
A number system in which the position of the radix point is
indicated by the exponent part and another part represents the
significant digits or fractional part (e.g., 5.39 X IO8 - Decimal;
137.3 X g4 -Octal; 101.10 X 213 -Binary).

Flowchart
A graphical representation for the definition, analysis, or
solution of a problem, in which symbols are used to represent
operations, data, flow, and equipment.

FOCAL (Formula CALculator)
An on-line interactive, service program designed to help
scientists. engineers, and students solve numerical problems.
The language consists of short imperative English statements
which are easy to learn. FOCAL is used for simulating
mathematical models, for curve plotting, for handling sets of
simultaneous equations, and for many other kinds of problems.

Glossary- 10

Glossary

Foreground
The area in memory designated for use by a high-priority
program. The program that gains the use of machine facilities
immediately upon request.

FORTRAN (FORmula TRANslation)
A problem-oriented language designed to permit scientists and
engineers to express mathematical operations in a form with
which they are familiar. It is also used in a variety of
applications including process control, information retrieval,
and commercial data processing.

Full duplex
In communication, pertaining to a simultaneous, 2-way in-
dependent “asynchronous” transmission.

Function
An algorithm accessible by name and contained in the system
software which performs commonly-used operations. For ex-
ample, the square root calculation function.

Garbage
Meaningless signals or bit patterns in memory.

General register
One of eight 16-bit internal registers in the PDP- 11 computer.
These are used for temporary storage of data.

Global
A value defined in one program module and used in others.
Globals are often referred to as entry points in the module in
which they are defined and as externals in the other modules
that use them.

Hack
A seemingly inspired, but obscure, solution that is superior by
some measure to a straightforward one.

Half duplex
Pertaining to a communication system in which 2-way com-
munication is possible, but only one way at a time.

Handler
See device handler.

Hard ware
The physical equipment components of a computer system.

Hardware bootstrap
A bootstrap that is inherent in the hardware and need only be
activated by specifying the appropriate load and start address.

Glossary- 1 I

Glossary

High-level language
A programming language whose statements are typically trans-
lated into more than one machine language instruction. Ex-
amples are BASIC, FORTRAN and FOCAL.

High-order byte
The most significant byte in a word. The high-order occupies bit
positions 8 through 15 of a PDP-11 word and is always an odd
address.

Image mode
Refers to a mode of data transfer in which each byte of data is
transferred without any interpretation or data changes.

Indirect address
An address that specifies a storage location containing either a
direct (effective) address or another indirect (pointer) address.

Indirect file
A file containing commands that are processed sequentially, but
that could have been entered interactively at a terminal.

Industry-standard
A condition, format, or definition that is accepted as the norm
by the majority of the (computer) industry.

Initialize
To set counters, switches, or addresses to starting values at
prescribed points in the execution of a program, particularly in
preparation for re-execution of a sequence of code. To format a
volume in a particular file-structured format in preparation for
use by an operating system..

Input
The data to be processed; the process of transferring data from
external storage to internal storage.

Input/Output device
A device attached to a computer that makes it possible to bring
information into the computer or get information out.

Instruction
A coded command that tells the computer what to do and
where to find the values it is to work with. A symbolic
instruction looks more like ordinary language and is easier for
people to deal with. Symbolic instructions must, however, be
changed into machine instructions (usually by another program)
before they can be executed by the computer.

Interactive processing
A technique of user/system communication in which the
operating system immediately acknowledges and acts upon
requests entered by the user at a terminal. Compare with batch
processing.

Glossary- 12

Glossary

Interface
A shared boundary. An interface might be a hardware com-
ponent to link two devices or it might be a portion of storage or
registers accessed by two or more computer programs.

Internal Storage
The storage facilities forming an integral physical part of the
computer and directly controlled by the computer, e.g., the
registers of the machine and main memory.

Interpreter
A computer program that translates then executes a source
language statement before translating (and executing) the next
statement.

Interrupt
A signal that, when activated, causes a transfer of control to a
specific location in memory, thereby breaking the normal flow
of control of the routine being executed.

Interrupt driven
Pertaining to software that uses the interrupt facility of a
computer to handle I/O and respond to user requests: RT-11 is
such a system.

Interrupt Vector
Two words containing the address of an interrupt service
routine and the processor state at which that routine is to
execute.

Iteration
Repetition of a group of instructions.

Job
A group of data and control statements which does a unit of
work, e.g., a program and all of its related subroutines, data,
and control statements; also, a batch control file.

Kluge
A crude, makeshift solution to a problem.

Label
One or more characters used to identify a source language
statement or line.

Language
A set of representations, conventions, and rules used to convey
information.

Latency
The time from initiation of a transfer operation to the
beginning of actual transfer; i.e., verification plus search time.
The delay while waiting for a rotating memory to reach a given
location.

Glossary- 13

Glossary

Library
A file containing one or more macro definitions or one or more
relocatable object modules that are routines that can be
incorporated into other programs.

LIFO (last in/first out)
A data manipulation method in which the last item stored is the
first item processed; a push down stack.

Light pen
A device resembling a pencil or stylus which can detect a
fluorescent CRT screen. Used to input information to a CRT
display system.

Linkage
In programming, code that connects two separately-coded
routines and passes values and/or control between them.

Linked file
A file whose blocks are joined together by references rather
than consecutive locations.

Linker
A program that combines many relocatable object modules into
an executable module. It satisfies global references and com-
bines program sections.

Listing
The printed copy generated by a line printer or terminal.

Load
To store a program or data in memory. To place a volume on a
device unit and put the unit on-line.

Load map
A table produced by a linker that provides information about a
load module’s characteristics (e.g., the transfer address, the
global symbol values, and the low and high limits of the
relocatable code).

Load module
A program in a format ready for loading and executing.

Location
An address in storage or memory where a unit of data or an
instruction can be stored.

Locked
Pertaining to routines in memory that are not presently (and
may never be) candidates for swapping or other shifting around.

Glossary- 14

Glossary

Logical device name
An alphanumeric name assigned by the user to represent a
physical device. The name can then be used synonymously with
the physical device name in all references to the device. Logical
device names are used in device-independent systems to enable a
program to refer to a logical device name which can be assigned
to a physical device at run-time.

Loop
A sequence of instructions that is executed repeatedly until a
terminal condition prevails.

Low-order byte
The least significant byte in a word. The low-order byte occu-
pies bit positions 0 through 7 in a PDP-11 word and is always an
even address.

Machine instruction
An instruction that a machine can recognize and execute.

Machine language
The actual language used by the computer when performing
operations.

Macro
An instruction in a source language that is equivalent to a
specified sequence of assembler instructions, or a command in a
command language that is equivalent to a specified sequence of
commands.

Main program
The module of a program that contains the instructions at
which program execution begins. Normally, the main program
exercises primary control over the operations performed and
calls subroutines or subprograms to perform specific functions.

Manual input
The entry of data by hand into a device at the time of
processing.

Mask
A combination of bits that is used to manipulate selected
portions of any word, character, byte, or register while retaining
other parts for use.

Mass storage
Pertaining to a device that can store large amounts of data
readily accessible to the computer.

Matrix
A rectangular array of elements. Any matrix can be considered
an array.

Glossary- 15

Glossary

Memory
Any form of data storage, including main memory and mass
storage, in which data can be read and written. In the strict
sense, memory refers to main memory.

Memory image
A replication of the contents of a portion of memory, usually in
a file.

Mnemonic
An alphabetic representation of a function or machine
instruction.

Monitor
The master control program that observes, supervises, controls
or verifies the operation of a computer system. The collection
of routines that controls the operation of user and system
programs, schedules operations, allocates resources, performs
I/O, etc.

Monitor command
An instruction or command issued directly to a monitor from a
user.

Monitor command mode
The state of the operating system (indicated by a period at the
left margin) which allows monitor commands to be entered
from the terminal.

Mount a volume
To logically associate a physical mass storage medium with a
physical device unit. To place a volume on a physical device
unit (for example, place a magtape on a magtape drive and put
the drive on-line).

Multiprocessing
Simultaneous execution of two or more computer programs by
a computer which contains more than one central processor.

Multiprogramming
A processing method in which more than one task is in an
executable state at any one time, even with one CPU.

Nondirectory-structured
Refers to a storage volume that is sequential in structure and
therefore has no volume directory at its beginning. File
information (file name, file type, length, and date-of-creation)
is provided with each file on the volume. Such volumes include
magtape and cassette.

Nonfile-structured device
A device, such as paper tape, line printer, or terminal, in which
data cannot be organized as multiple files.

Glossary- 16

Glossary

Object Code
Relocatable machine language code.

Object module
The primary output of an assembler or compiler, which can be
linked with other object modules and loaded into memory as a
runnable program. The object module is composed of the
relocatable machine language code, relocation information, and
the corresponding global symbol table defining the use of
symbols within the module.

Object Time System
The collection of modules that is called by compiled code in
order to perform various utility or supervisory operations (e.g.,
FORTRAN object time system).

Octal
Pertaining to the number system with a radix of eight; for
example, octal 100 is decimal 64.

ODT
On-line Debugging Technique: an interactive program for finding
and correcting errors in programs. The user communicates in
octal notation.

Off-line
Pertaining to equipment or devices not currently under direct
control of the computer.

Offset
The difference between a base location and the location of an
element related to the base location. The number of locations
relative to the base of an array, string, or block.

One’s complement
A number formed by interchanging the bit polarities in a binary
number: e.g., 1s become OS; OS become 1s.

On-line
Pertaining to equipment or devices directly connected to and
under control of the computer.

Op-code (operation code)
The part of a machine language instruction that identifies the
operation the instruction will ask the CPU to perform.

Operand
That which is operated upon. An operand is usually identified
by an address part of an instruction.

Operating system
The collection of programs, including a monitor or executive
and system programs, that organizes a central processor and
peripheral devices into a working unit for the development and
execution of application programs.

Glossary- 17

Glossary

Operation
The act specified by a single computer instruction. A program
step undertaken or executed by a computer, e.g., addition,
multiplication, comparison. The operation is usually specified
by the operator part of an instruction.

Operation code
See op-code.

Operator’s console
The set of switches and display lights used by an operator or a
programmer to determine the status of and to start the
operation of the computer system.

Option
An element of a command or command string that enables the
user to select from among several alternatives associated with
the command. In the RT-11 computer system, an option
consists of a slash character (/) followed by the option name
and, optionally, a colon and an option value.

output
The result of a process; the transferring of data from internal
storage to external storage.

Overflow
A condition that occurs when a mathematical operation yields a
result whose magnitude is larger than the program is capable of
handling.

Overlay segment
A section of code treated as a unit that can overlay code already
in memory and be overlaid by other overlay segments when
called from the root segment or another resident overlay
segment.

Overlay structure
A program overlay system consisting of a root segment and
optionally one or more overlay segments.

Page
That portion of a text file delimited by form feed characters
and generally 50-60 lines long. Corresponds approximately to a
physical page of a program listing.

Parameter
A variable that is given a constant value for a specific purpose or
process.

Parity
A binary digit appended to an array of binary digits to make the
sum of all bits always odd or always even.

Glossary- 18

Glossary

Patch
To modify a routine in a rough or expedient way, usually by
modifying the binary code rather than re-assembling it.

PC
See Program counter.

PDP
Programmed data processor.

Peripheral device
Any device distinct from the computer that can provide input
and/or accept output from the computer.

. Physical device
An I/O or peripheral storage device connected to or associated
with a computer.

Priority
A number associated with a task that determines the preference
its requests for service receive from the monitor, relative to
other tasks requesting service.

Process
A set of related procedures and data undergoing execution and
manipulation by a computer.

Processor
In hardware, a data processor. In software, a computer program
that includes the compiling, assembling, translating, and related
functions for a specific programming language (e.g., FORTRAN
processor).

Processor status word
A register in the PDP-11 that indicates the current priority of
the processor, the condition of the previous operation, and
other basic control items.

Program
A set of machine instructions or symbolic statements combined
to perform some task.

Program counter (PC)
A register used by the central processor unit to record the
locations in memory (addresses) of the instructions to be
executed. The PC (register 7 of the 8 general registers) always
contains the address of the next instruction to be executed, or
the second or third word of the current instruction.

Program development
The process of writing, entering, translating, and debugging
source programs.

Glossary- 19

Glossary

Program section
A named, contiguous unit of code (instructions or data) that is
considered an entity and that can be relocated separately
without destroying the logic of the program.

Programmed request
A set of instructions (available only to programs) that is used to
invoke a monitor service.

Protocol
A formal set of conventions governing the format and relative
timing of information exchange between two communicating
processes.

PSW
See Processor status word.

Queue
Any dynamic list of items; for example, items waiting to be
scheduled or processed according to system or user assigned
priorities.

Radix
The base of a number system; the number of digit symbols
required by a number system.

RAM (random access memory)
See Random access.

Random access
Access to data in which the next location from which data is to
be obtained is not dependent on the location of the previously
obtained data. Contrast Sequential access.

Read-only memory (ROM)
Memory whose contents are not alterable by computer
instructions.

Real-time processing
Computation performed while a related or controlled physical
activity is occurring so that the results of the computation can
be used in guiding the process.

Record
A collection of related items of data treated as a unit; for
example, a line of source code or a person’s name, rank, and
serial number.

Recursive
A repetitive process in which the result of each process is
dependent upon the result of the previous one.

Glossary-20

Glossary

Re-entrant
Pertaining to a program composed of a shareable segment of
pure code and a non-shareable segment which is the data area.

Register
See General register.

Relative address
The number that specifies the difference between the actual
address and a base address.

Relocate
In programming, to move a routine from one portion of storage
to another and to adjust the necessary address references so that
the routine, in its new location, can be executed.

Resident
Pertaining to data or instructions that are normally permanently
located in main memory.

Resource
Any means available to users, such as computational power,
programs, data files, storage capacity, or a combination of
these.

Restart
To resume execution of a program.

ROM
See Read-only memory.

Root segment
The segment of an overlay structure that, when loaded, remains
resident in memory during the execution of a program.

Routine
A set of instructions arranged in proper sequence to cause a
computer to perform a desired operation.

Run
A single, continuous execution of a program.

Sector
A physical portion of a mass storage device.

Segment
See Overlay segment.

Sequential access
Access to data in which the next location from which data is to
be obtained sequentially follows the location of the previously
obtained data. Contrast Random access.

Glossary-2 1

Glossary

Software
The collection of programs and routines associated with a
computer (e.g., compilers, library routines).

Software bootstrap
A bootstrap that is activated by manually loading the instruc-
tions of the bootstrap and specifying the appropriate load and
start address.

Source code
Text, usually in the form of an ASCII format file, that
represents a program. Such a file can be processed by an
appropriate system program.

Source language
The system of symbols and syntax easily understood by people
that is used to describe a procedure that a computer can
execute.

Spooling
The technique by which I/O with slow devices is placed on mass
storage devices to await processing.

Storage
Pertaining to a device into which data can be entered, in which
it can be held, and from which it can be retrieved at a later
time.

String
A connected sequence of entities such as a line of characters.

Subprogram
A program or a sequence of instructions that can be called to
perform the same task (though perhaps on different data) at
different points in a program, or even in different programs.

Subroutine
See Subprogram.

Subscript
A numeric valued expression or expression element that is
appended to a variable name to uniquely identify specific
elements of an array. Subscripts are enclosed in parentheses.
There is a subscript for each dimension of an array. Multiple
subscripts must be separated by commas, For example, a
two-dimensional subscript might be (2,5).

Supervisory programs
Computer programs that have the primary function of sched-
uling, allocating, and controlling system resources rather than
processing data to produce results.

Glossary-22

Glossary

Swapping
The process of moving data from memory to a mass storage
device, temporarily using the evacuated memory area for
another purpose, and then restoring the original data to
memory.

Synchronous
Pertaining to related events where all changes occur simultane-
ously or in definite timed intervals.

Syntax
The structure of expressions in a language and the rules
governing the structure of a language.

System program
A program that performs system-level functions. Any program
that is part of or supplied with the basic operating system (e.g.,
a system utility program).

System volume
The volume on which the operating system is stored.

Table
A collection of data into a well-defined list.

Terminal
An I/O device, such as an LA36 terminal, that includes a
keyboard and a display mechanism. In PDP-11 systems, a
terminal is used as the primary communication device between
a computer system and a person.

Timesharing
A method of allocating resources to multiple users so that the
computer, in effect, processes a number of programs
concurrently.

Toggle
To use switches on the computer operator’s console to enter
data into the computer memory.

Translate
To convert from one language to another.

Trap
A conditional jump to a known memory location performed
automatically by hardware as a side effect of executing a
processor instruction. The address location from which the
jump occurs is recorded. It is distinguished from an interrupt
which is caused by an external event.

Truncation
The reduction of precision by ignoring one or more of the least
significant digits; e.g., 3.141597 truncated to four decimal digits
is 3.141.

Glossary-23

Turnkey
Pertaining to a computer system sold in a ready-to-use state.

Two’s complement
A number used to represent the negative of a given value in
many computers. This number is formed from the given binary
value by changing all 1s to OS and all OS to 1s and then adding
1.

Underflow
A condition that occurs when a mathematical operation yields a
result whose magnitude is smaller than the smallest amount the
program can handle.

User program
An application program.

Utility program
Any general-purpose program included in an operating system
to perform common functions.

Variable
The symbolic representation of a logical storage location that
can contain a value that changes during a processing operation.

Vector
A consecutive list of associated data.

Volume
A mass storage medium that can be treated as file-structured
data storage.

Wildcard operation
A shorthand method of referring to all files with a specific
characteristic in their name.

Word
Sixteen binary digits treated as a unit in PDP-11 computer
memory.

Write-enable
The condition of a volume that allows transfers that would
write information on it.

Write-protect
The condition of a volume that is protected against transfers
that would write information on it.

Glossary-24

INDEX

@ character, 16-4 BASIC file maintenance commands,
Absolute location, 114 summary, 1 O-l 5
Absolute program section, 124, 12-5 BASIC immediate mode, 1 O-3
Address, 114, 1 l-l 1
Address,

starting, 14-6
transfer, 14-6

Address assignment, 12-3
Advance command (A),

EDIT, 5-9
Advice to new users, 17-1
Alternate functions for FORTRAN

program, 9- 13
ALTMODE

see ESCAPE
APL language, 8-3, 84
Application program, l-l 0
Applications package, l-l 3
Argument, 5-5
Arguments,

EDIT, table, 5-5
ASCII format, 5-l
Assembler listing, 1 l-l 0
Assembling the MACRO-l 1

program, 1 l-7
Assembly language, 1 - 13

BASIC interpreter,
using the, 1 O-2

BASIC program,
creating a, 1 O-4
editing a, 10-4
running a, 1 O-l, 1 O-9

Beginning command (B),
EDIT, 5-4

Binary digit, 1 l-5
Bit, 1 l-5
Blank program section, 12-6
BOOT command, 15-2
Bootstrapping, 2-1, 2-4
Breakpoints, 14-8
/BRIEF option,

DIRECTORY, 4-16
Bug, 11-17
Buffer, text, 5-l
BYE command,

BASIC, 1 O-3
Byte, 1 l-5

see also MACRO-l 1, Machine-level language Carriage return, 4- 1
ASSIGN command, 4- 12 see also RETURN key
At sign (@), 164 Cathode ray tube (CRT), 4-6
Avoiding programming errors, 14-l Changing monitors, 15-2

Character insertion, 5- 18
Backup file, 3-8 Choosing a programming language, 8-l
BASIC-l 1 language, 8-3, 84, 10-l Clerical errors, 14-2
BASIC command, 10-3 Clock, 4-9
BASIC demonstration program (23 Code,

Matches), 1 O-8 machine language, 1 l-5
BASIC editing commands, object, 9-1, 9-3, 114

summary, 1 O-7 Command format, 4-2
BASIC execution commands, Command to start an indirect

summary, 1 O-l 2 file, summary, 16-8

Index-l

Index

Commands,
control, 4-3
keyboard monitor, 4-l

Commands for debugging programs,
summary, 14-12

Commands for linking programs,
summary, 12-l 1

Commands for maintaining
library files, summary, 13-8

Commands used in an FB environment,
summary, 15-l 0

Communication in a 2-job
environment, 15-3

Comparing files, 6-l
Comparison command, 6-l

see also DIFFERENCES
Comparison command,

summary of, 6-5
Compiler, 9-2
Compiling the FORTRAN IV

program, 9-3
Computer, l-l
Compute:,

PDP-11, l-l
Computer manuals, l-l 4
Computer system, l-l
Computer system,

interacting with the RT-11, 3-l
RT-11, l-l
starting the RT-11, 2-l

Console terminal, l-5, 3-l
Constructing library files, 13-l
Control commands, 4-3

CTRL/B, 154
CTRL/C, 4-16, 5-20, 10-l 1
CTRL/D, 5-I 9
CTRL/E, 4-8
CTRL/F, 154
CTRL/G, 5-l 8
CTRL/L, 5-l 1
CTRL/N, 5-l 9
CTRL/Q, 4-14
CTRL/U, 4-5
CTRL/V, 5-l 9
CTRL/X, 5-8

Control commands,
summary of, 4-19

CTRL key, 34
Conversion, decimal/octal/

binary, 1 l-6

Correcting typing mistakes, 4-5
COPY command, 7-3
Copying files, 7-3
/CREATE option,

EDIT, 5-2
LIBRARY, 13-2, 13-5

Creating a BASIC program, 104
Creating a file, 5-2
Creating the foreground job, 15-4
Creating an indirect file, 16-l
Creating a library file, 13-2
CREF, 1 l-l 1

see also Cross reference
/CROSSREFERENCE option,

EXECUTE, 1 l-l 8
MACRO, 1 l-8

Cross reference listing, 11-l 1
see also CREF

CRT,
see Cathode ray tube

Data,
test, 14-3

DATE command, 4-9
Date,

entering the, 4-9
DEASSIGN command, 16-2
/DEBUG option,

LINK, 14-6
Debugging, 14-l
Decimal/Octal/Binary conversion, 1 l-6
DECIND.USA, 5-3
DELETE command,

BASIC, 1 O-6
EDIT, 5-9, 5-19
monitor, 7-7

DELETE key, 3-3,4-4
Deleting files, 7-6
Demonstration program,

BASIC (23 Matches), 10-8
EDIT (DECIND.USA), 5-3
FORTRAN (GRAPH.FOR), 5-2 1
MACRO (SUM.MAC), 5-22

Desk manuals, l-1 4
Devices,

input, 1-8
output, 1-8
peripheral, 1-8
terminal, 14

Index-2

Inclex

Device names,
logical, 4-l 0

table, 4-l 1
physical, 4-10

table, 4-l 1
Device handler, 1 - 11
Device status, 4-13
Device unit, 3-6
DIBOL language, _ 8-3
DIFFERENCES command, 6-1, 6-2, 6-3

see also Comparison command
Differences listing, 6-3
Directory, 3-8
Directory,

tile, 7-l
DIRECTORY command, 4-14,4-16
Directory listing, 3-8
Disk, l-6
Display hardware, 4-6

see also Graphics
Display hardware,

VT1 1, 4-6, 5-16
Distribution medium, l-6
Documentation, l-l, 1-13
Drive,

see Device unit

EDIT arguments, 5-5
EDIT command, 5-2, 5-4
Editing a BASIC program, 104
Editing commands,

summary of, 5-14
Editing a file, 54
Editor, RT-11, 5-l
Edit Lower command (EL),

EDIT, 5-13
‘Edit Upper command (EU),

EDIT, 5-13
Entering the date, 4-9
Entering the time, 4-9
Errors,

avoiding programming, 14-l
clerical, 14-2

,logical, 14-2
programming, 1 l-l 7
syntax, 14-2

ESC,
see ESCAPE

ESCAPE, 5-3, 5-18, 5-20
ESCAPE key, 34

EXECUTE command, 9-l 2, 1 l-l 8
Executing an indirect file, 16-4
Executive,

see Monitor
Exit command (EX),

EDIT, 54

FB
see Foreground/Background

FDT, ’
see FORTRAN Debugging Technique

File, 3-8
Files,

backup, 3-8
comparing, 6-l
copying, 7-3
creating, 5-2
deleting, 7-6
editing, 54
indirect, 16-l
listing, 7-7
renaming, 7-5

File directory, 7-l
File maintenance, 7-l
File maintenance commands,

summary of, 7-8
File name, 3-8
File protection, 3-8
File storage, 3-8
File type, 3-8

table, 4-l 5
/FOREGROUND option,

LINK, 15-5
Foreground/background environment, 15-l.
Foreground/background monitor (FB),

using the, 15-1
Foreground job,

creating the, 154
FOCAL-l 1 language, 8-3, 84
Form feed, 5-l 1
Format,

ASCII, 5-l
command, 4-2
long command, 4-l
short command, 4-l

FORTRAN command, 9-4
FORTRAN Debugging Technique

(FDT), 144
FORTRAN IV language, 8-3, 84,9-l

Index-3

Index

/FORTRAN option,
EXECUTE, 9-l 3

FORTRAN IV program,
alternate functions for, 9-l 3
compiling the, 9-3
running a, 9-1, 9-l 1

Front panel, l-2
FRUN command, 15-7

GAMMA-l 1, l-13
Get command (G),

EDIT, 5-10
Global symbols, 12-2
Global symbol table, 13-2
Graphics, 4-6, 5-16

see also Display hardware
GRAPH. FOR, 5-21
GT command, 4-6

Handler, device, l-1 1
Hardware, l-l
Hardware,

display, 4-6
see also Graphics

system, l-l
VT1 1 display, 4-6, 5-16

Hardware configuration, 2-1
Hardware manuals, 1 - 13
High-level language, 8-l

Indirect files, 16-1
Indirect files,

creating, 16-l
executing, 16-4
using, 16-l

INITIALIZE command, 4-l 7
Initializing a storage volume, 4- 16
Input devices, l-8
Insert command (I),

EDIT, 5-3
/INSERT option,

LIBRARY, 13-7
Insertion,

character, 5-l 8
Instruction program section, 12-6
Interacting with the RT-11

computer system, 3-l
Internal symbols, 12-2
Interpreter, 1 O-l
Immediate mode,

BASIC, 1 O-3

EDIT, 5-17
Immediate mode commands,

EDIT,
table, 5-l 7

Jump command (J),
EDIT, 5-7

Key,
CTRL, 34
DELETE, 3-3,44
ESCAPE, 34
LINE FEED, 34
RETURN, 3-4,4-l

see also Carriage return
TAB, 3-4

Keyboard,
terminal, 14, 3-3

Keys, 3-3
table, 3-5, 4-4

Keyboard characters,
see Keys

Keyboard layouts, 3-3
Keyboard monitor (KMON), 4-1
Keyboard monitor commands, 4-l

see also Monitor command
language, Monitor commands

Kill command (K),
EDIT, 5-9

KMON,
see Keyboard monitor

LA36 terminal, 3-1
Label, 11-2, 1 l-l 1
Language,

assembly, 1-13
see also MACRO-l 1, Machine-level language

choosing a programming, 8-l
high-level, 8- 1
machine-dependent

see Machine-level language
machine-independent

see High-level language
machine level, l-13,8-2

see also MACRO-l 1, Assembly
language

monitor command, 4-1
see also Keyboard monitor

commands, Monitor commands
RT-11 programming, 8-3

Index-4

Index

Language processor, l-l 0, l-l 2
Library, 13-l
Library,

macro, 13-l
object, 13-2

LIBRARY command, 13-2
Library references,

resolving, 12-2
Library modules,

using, 9-2
Library file, 13-1, 13-2
LINE FEED key, 3-4
LINK command, 9-10, 11-16
Linking object modules, 9-9, 1 l-l 5
Linking object programs, 12-l
LIST command,

BASIC, 1 O-6
EDIT (L), 5-5

/LIST option,
EXECUTE, 9-13, 11-18
FORTRAN, 9-4
LIBRARY, 13-6
MACRO, 1 l-8

Listing,
assembler, 1 l-l 0
cross reference, 1 l-l 1

see also CREF
differences, 6-3
directory, 3-8
source, 1-14

Listing files, 7-7
LISTNH command,

BASIC, 1 O-6
LOAD command, 15-6
Load map, 12-7
Load module, 9-10, 12-7
Location, 1 l-3
Location,

absolute, 1 l-4
relative, 114

Logical device name, 4-l 0
table, 4-l 1

Logical errors, 14-2
Long command format, 4-l
Loop, 10-l 1
Lower case, 5-l 3

Machine-dependent language,
see Machine-level language

Machine-independent language,
see High-level language

Machine-level language, l-l 3, 8-2
see also MACRO-l 1, Assembly

language
Machine language code, 1 l-5
Macro, 11-12, 13-1
Macro,

system, 11-13
MACRO command, 1 l-8
MACRO-l 1 language, 1-13, 8-4, 1 l-l

see also Assembly language,
Machine-level language

Macro library, 13-l
/MACRO option,

LIBRARY, 13-2
MACRO-l 1 program,

assembling the, 1 l-7
running, 1 l-l, 11-17

Maintaining a library file, 13-2
Main program, 12-l
Manuals,

computer, l-l 4
desk, 1-14
hardware, 1-13
once-only, 1-14
software, 1-14

Map,
load, 12-7

/MAP option,
EXECUTE, 12-7
LINK, 12-7

/MATCH option,
DIFFERENCES, 6-3

Memory, 2-l
Mistakes,

correcting typing, 4-5
Module,

load, 12-7
object, 9-2, 9-3, 1 l-5

Modules,
linking object, 1 l-l 5

Modular programming, 12-2, 14- 1
Monitor, l-l 1
Monitor,

foreground/background (FB), 15-l
keyboard (KMON), 4-l
resident (RMON), 4-l
single-job (SJ), 4-2

Monitor command language, 4-l
see also Keyboard monitor

commands, Monitor
commands

Index-5

Index

Monitor commands,
summary of, 4-l 8

Monitor commands,
see also Keyboard

monitor commands,
Monitor command language

ASSIGN, 4-12
BASIC, 1 O-3
BOOT, 15-2
COPY, 7-3
DATE, 4-9
DEASSIGN, 16-2
DELETE, 7-7
DIFFERENCES, 6-3
DIRECTORY, 4-14
EDIT, 5-2
EXECUTE, 9-12, 11-18
FORTRAN, 94
FRUN, 15-7 l

GT, 4-6
INITIALIZE, 4- 17
LIBRARY, 13-2
LINK, 9-10, 11-16
LOAD, 1.5-6
MACRO, 1 l-8
RENAME, 5-6, 7-5
RUN, 9-l 1
SHOW, 4-13
TIME, 4-9, 7-8
UNLOAD, 15-9

Multiple file operations,
see Wildcards

Name,
file, 3-8
logical device, 4-l 0

table, 4-l 1
physical device, 4-l 0

table, 4-11
Named relocatable program

section, 12-5
NEW command,

BASIC, lo-13
New users,

advice to, 17-1
Next command (N),

EDIT, 5-12
Numbers,

octal, 11-6

Object code, 9-1,9-3, 114
Object library, 13-2
Object module, 9-2,9-3, 9-10, 1 l-5
Object modules,

linking, 9-9, 11-15
Object programs,

linking, 12-l
Octal numbers, 1 l-6
ODT,

see On-line Debugging Technique
OLD command,

BASIC, 1 O-l 3
Once-only manuals, 1 - 14
On-line Debugging Technique

(ODT), 144
On-line Debugging Technique,

using the, 144
Operand, 1 l-2
Operating system, l-10, l-l 1
Operating system,

RT-11, 1-11
Operator, 1 l-2
Operator’s console, l-2
Output devices, l-8
Overlay segment, 12-7
Overlays, 12-7

Package,
applications, 1-13

Paging, 5 -2
PDP-I 1 computer, l-l
PDP-11 instruction set, 1 l-l
PDP-11 Programming Card, 11 -I
Peripheral devices, l-8
Physical device name, 4-l 0

table, 4-l 1
Pointer, 4-7
PRINT command,

BASIC, 104
monitor, 7-8

/PRINTER option,
DIRECTORY, 4-16

Processor,
language, l-12

Producing a load map, 12-7
Producing a load module, 12-7
Program,

application, l-l 0
demonstration, 5-20
linking an object, 12-1

Index-6

Index

main, 12-1
utility, l-l 2

Program counter, 1 l-3, 12-6
Program relocation, 12-3
Program section,

absolute, 12-S
blank, 12-6
instruction, 12-6
named relocatable, 12-5

Program units, 9-1
/PROMPT option,

LINK, 12-7
Programmed request, 1 l-l 3
Programming,

modular, 12-2, 14-l
Programming errors, 1 l-l 7
Programming errors,

avoiding, 14-l
Programming language,

choosing a, 8-1

Random access, l-6
Read command (R),

EDIT, 5-4
Relative location, 114
Relocation constant, 14-7
Relocation registers, 14-7
Relocatable section, 12-4
/REMOVE option,

LIBRARY, 13-7
RENAME command, 5-6, 7-5
Renaming files, 7-5
REPLACE command,

BASIC, lo-14
Request,

programmed, 1 l-l 3
Resident monitor (RMON), 4-l
Resolving library references, 12-2
Resolving symbolic references, 12-2
RETURN key, 34,4-l

see also Carriage return
RMON,

see Resident monitor
Root segment, 12-7
Routine,

user service (USR), 4-l
RT-11 computer system, l-l
RT-11 computer system,

interacting with, 3-1
starting, 2-1

RT-11 editor, 5-l
RT-11 operating system, 1 -I 1
RT-11 programming languages, 8-3
RUBOUT,

see DELETE
RUN command,

BASIC, 1 O-9
monitor, 9-l 1

Running a BASIC-l 1 program, 1 O-l, 10-9
Running a FORTRAN IV program, 9-1,9-l 1
Running a MACRO-l 1 program, 1 l-l, 1 l-17
RUNNH command,

BASIC, 1 O-9

SAVE command,
BASIC, 1 O-13

SCRATCH command (SCR),
BASIC, 1 O-7

Sequential access, l-6
Short command format, 4-l
SHOW command, 4-13
Single-job monitor (SJ), 4-2
SJ,

see Single-job monitor
Software, l-l
Software,

system, l-10
Software manuals, 1-14
Source listings, l-l 4
Starting address, 14-6
Starting the RT-11 computer

system, 2-l
Status,

device, 4-13
STOP statement,

BASIC, 14-3
Storage medium, l-l, l-6
Storage volume, 2-3, 34
Storage volume,

initializing a, 4-l 6
Subprogram, 12-l
Subroutine, 12-l
SUBSTITUTE command (SUB),

BASIC, 1 O-5
SUM.MAC, 5-22
Summary,

BASIC editing commands, 1 O-7
BASIC execution commands, 1 O-l 2
BASIC file maintenance

commands, 1 O-l 5

Index-7

Index

commands for debugging programs, 14-12
commands used in an FB environment,

15-10
commands to run FORTRAN programs, 9-l 3
commands for linking programs, 12-l 1
commands to run MACRO-l 1 programs,

11-18
commands for maintaining library files,

13-8
command to start an indirect file, 16-8
comparison command, 6-5
control commands, 4-l 9
editing commands, 5-14
file maintenance commands, 7-8
monitor commands, 4-18

Symbol, 1 l-1 1
Symbols,

global, 12-2
in tern al, 12-2

Symbol table, 11-4, 1 l-l 1
Symbolic references,

resolving, 12-2
Syntax errors, 14-2
SYSMAC.SML, 1 l-13
System,

computer, l-l
operating, l-l 1

System hardware, l-l
System macro, 11-13
System software, l-10
System testing, 14-3
System volume, 2-2, 2-3

table, 2-3

TAB key, 34
Terminal, 1-l
Terminal,

console, 3-l
LA36, 3-l
VT52, 3-l

Terminal devices, 14
Terminal keyboard, l-4,3-3
Testing,

system, 14-3
unit, 14-3

Test data, 14-3
Text buffer, 5-l
Time,

entering the, 4-9
TIME command, 4-9
Traceback, 14-3
Transfer address, 14-6
Type,

file, 3-8
TYPE command, 7-8
Typing mistakes,

correcting, 44

Unit,
device, 3-6
program, 9- 1

Unit testing, 14-3
UNLOAD command, 15-9
Upper case, 5-13
User service routine (USR), 4-l
Using the BASIC interpreter, 1 O-2
Using the foreground/background

monitor, 15-I
Using indirect files, 16-l
Using library modules, 9-2
Using the On-line Debugging

Technique, 1411
USR,

see User service routine
Utility program, 1 - 12

Verify command (V),
EDIT, 5-8

Video screen, 3-l
Volume,

storage, 34
Volume directory,

see Directory
VT1 1 display hardware, 4-6, 5-16

see also Graphics
VT52 terminal, 3-l

Wildcards, 5-12, 7-3
Word, 1 l-5
Write enable, 3-9
Write protect, 3-8

Index-8

Introduction to RT-I 1
DEC-11 -ORITA-A-D

READER’S COMMENTS I
I
I
I
I
I

I

I

I
I
I
I
I

I
I
I
I

I
I

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. Problems with software should be reported on a Software Performance Report
(SPR) form. If you require a written reply and are eligible to receive one under SPR service, submit
your comments on an SPR form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions-for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this
manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
0 Higher-level language programmer
0 Occasional programmer (experienced)
0 User with little programming experience
Cl Student programmer
Cl Non-programmer interested in computer concepts and capabilities

Name Date

Organization

City State Zip Code
or

Country

.---me ______________________________ ---_--__- ______ e--m__ Fold Hem _______________ -___-___--__--_---_--------- ___-___________ -

__-------~ D , , N , , t Tea, _ Fold Here and S&,,, le _____________________________________ --mm------

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation
146 Main Street ML S-5/E39
Maynard, Massachusetts 01754

